
CS051A 

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

18: Problem solving via search and matrices

Alexandra Papoutsaki


she/her/hers


Lectures

04-03-2023

Zilong Ye


he/him/his


Labs



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Problem solving via search and matrices

▸ Problem solving via search


▸ Matrices


▸ Assignment 9

2



Search algorithm

Keep track of a list of states that we could visit; we’ll call it to_visit.


General idea:


‣ take a state off the to_visit list


‣ if it’s the goal state


‣ we’re done!


‣ if it’s not the goal state


‣ Add all of the next possible states to the to_visit list


‣ repeat

SEARCH



PROBLEM SOLVING VIA SEARCH

Search algorithms

‣ add the start state to to_visit


‣ Repeat


‣ take a state off the to_visit list


‣ if it’s the goal state


‣ we’re done!


‣ if it’s not the goal state


‣ Add all of the next possible states to the to_visit list 


‣ Depth first search (DFS): to_visit is a stack


‣ Breadth first search (BFS): to_visit is a queue



Implementing the state space

‣ What the “world” looks like.


‣ We’ll define the world as a collection of discrete 
states.


‣ States are connected if we can get from one state to 
another by taking a particular action.


‣ The set of all possible states is called the state space.

SEARCH



Implementing the state space

‣ What the “world” looks like.


‣ We’ll define the world as a collection of discrete states.


‣ States are connected if we can get from one state to another by 
taking a particular action.


‣ The set of all possible states is called the state space.


‣ State:


‣ Is this the goal state? (is_goal function)


‣ What states are connected to this state? (next_states function)

SEARCH



PROBLEM SOLVING VIA SEARCH

Search variants implemented

‣ add the start state to to_visit


‣ Repeat


‣ take a state off the to_visit list


‣ if it’s the goal state


‣ we’re done!


‣ if it’s not the goal state


‣ Add all of the next possible 
states to the to_visit list 



PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

‣ Order: 1, 2, 5



PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

‣ Order: 1, 2, 5, 3, 6, 9, 7, 8



PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

‣ Order: 1, 2, 5, 3, 6, 9, 7, 8 


‣ What search algorithm is this?



PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

‣ Order: 1, 2, 5, 3, 6, 9, 7, 8


‣ DFS!



PROBLEM SOLVING VIA SEARCH

DFS with a stack

‣ Order: 1, 4, 3, 8, 7, 6, 9, 2, 5



PROBLEM SOLVING VIA SEARCH

One last DFS variant

‣ How is this different?



PROBLEM SOLVING VIA SEARCH

One last DFS variant

‣ Return ALL solutions found, not just one.



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Problem solving via search and matrices

▸ Problem solving via search


▸ Matrices


▸ Assignment 9

15



MATRICES

What is a matrix?

▸ A matrix is a two-dimensional structure, e.g., 
0 1 0 
1 8 2 
5 0 3


▸ It has rows and columns.


▸ The second row is: 1 8 2


▸ The second column is: 
1 
8 
0


▸ Since we are computer scientists, we'll start indexing at 0. That means that the first row 
is row 0 and the first column is column 0.



MATRICES

Indexing into matrices

▸ Individual entries in a matrix can be references by specifying a row and a column.


▸ 0 1 0 
1 8 2 
5 0 3


▸ Let’s say that the matrix above is called m, what entry does m[1][2] represent?


▸ In math, we might write this as m(1, 2).


▸ 1 = second row, 2 = third column, that is m[1][2] is 2.


▸ How would we get at the 3 in the above matrix?


▸ m[2][2]



MATRICES

Implementing matrices in Python

▸ We can use lists of lists! 
 
 
 

▸ Could also have constructed this as:



MATRICES

Implementing matrices in Python

▸ what does m[1] represent?


▸ the second row!


▸ matrices are just lists of lists.



MATRICES

matrix.py

▸ what do zero_matrix and 
zero_matrix2 do?


▸ They both create a size x 
size matrix with all entries 
zero.


▸ zero_matrix does this an 
entry at a time.


▸ zero_matrix2 does this a row 
at a time.



MATRICES

matrix.py

▸ what does random_matrix do?


▸ It creates a size x size matrix with random ints between 0 
and size x size



MATRICES

matrix.py

▸ How would we print out a matrix in a more normal form (one row at a time)?


▸ iterate through the rows and print each out. 


▸ Look at the print_matrix and print_matrix2 function.


▸ What does the identity function do?


▸ It creates an identity size by size matrix with all zeros except for ones along the diagonal


▸ How would we sum up all the numbers in a matrix?


▸ Iterate over each entry and add them up


▸ Look at the matrix_sum function. 


▸ What does len(m) give us?


▸ the number of rows (remember, list of lists)


▸ what does len(m[row]) give us?


▸ the number of columns (in that row, technically)


▸ Look at the matrix_sum2 and matrix_sum3 functions. 


▸ They use the sum function to sum up each row and then add that to the total.



MATRICES

copying matrices 

▸ Be careful when you want to create a deep copy of a matrix. See 
the code below. What’s the problem?



MATRICES

copying matrices 

▸ If you want to copy a matrix and 
avoid aliasing issues, you should 
either:


▸ use the copy module 
import copy  
copy.deepcopy(m)


▸ or by creating a deep copy of 
each row and appending it to 
a new list.



MATRICES

tic_tac_toe.py

▸ How would you represent a tic tac toe board?


▸ As a 3 by 3 matrix.


▸ Each entry has one of three values:


▸ empty


▸ X


▸ O



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Problem solving via search and matrices

▸ Problem solving via search


▸ Matrices


▸ Assignment 9

26



ASSIGNMENT 9

N-queens problem

▸ Place N queens on an N by N chess board such that none of the N 
queens are attacking any other queen. 
 
 
 
 
 

Solution(s)?



ASSIGNMENT 9

N-queens problem

▸ Place N queens on an N by N chess board such that none of the N 
queens are attacking any other queen. 
 
 
 
 
 



ASSIGNMENT 9

N-queens problem

▸ Place N queens on an N by N chess board such that none of the N 
queens are attacking any other queen. 
 
 
 
 
 

Solution(s)?



ASSIGNMENT 9

N-queens problem

▸ Place N queens on an N by N chess board such that none of the N 
queens are attacking any other queen.


▸ How do we solve this with search:


▸ What is a state?


▸ What is the start state?


▸ What is the goal?


▸ How do we transition from one state to the next?



PROBLEM SOLVING VIA SEARCH

Search algorithm

‣ add the start state to to_visit


‣ Repeat


‣ take a state off the to_visit list


‣ if it’s the goal state


‣ we’re done!


‣ if it’s not the goal state


‣ Add all of the next possible states to the to_visit list 


‣ Any problem that we can define these three things can be plugged into the search 
algorithm!

Is this a goal state?

What states can I get to from the current state?



ASSIGNED READINGS AND PRACTICE PROBLEMS 32

Homework

▸ Assignment 9

Resources

▸ search_variants.py

▸ matrix.py

▸ tic_tac_toe.py

▸ https://en.wikipedia.org/wiki/Eight_queens_puzzle

https://cs.pomona.edu/classes/cs51a/assignments/assign9.pdf
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/search_variants.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/matrix.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/tic_tac_toe.txt
https://en.wikipedia.org/wiki/Eight_queens_puzzle

