CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al

18: Problem solving via search and matrices

=~ T Alexandra Papoutsaki ~. Lilong Ye
& she/her/hers Avay helhim/his

Lectures , Labs

TODAY'S LECTURE IN A NUTSHELL

Lecture 18: Problem solving via search and matrices

» Problem solving via search
» Matrices

» Assignment 9

SEARCH
Search algorithm

Keep track of a list of states that we could visit; we'll call it to_visit.

General idea:
* take a state off the to_visit list
" if it's the goal state
" we're done!

" if it's not the goal state

~ Add all of the next possible states to the to_visit list

" repeat

PROBLEM SOLVING VIA SEARCH

Search algorithms

* add the start state to to_visit
" Repeat
* take a state off the to_visit list
" if it's the goal state
~ we're done!
" if it's not the goal state
* Add all of the next possible states to the to_visit list

"~ Depth first search (DFS): to_visit is a stack

" Breadoth first search (BFS): to_visit is a queue

SEARCH

Implementing the state space

* What the “world” looks like.

~ We'll define the world as a collection of discrete
states.

~ States are connected if we can get from one state to
another by taking a particular action.

~ The set of all possible states is called the state space.

SEARCH

Implementing the state space

> What the “world” looks like.

~ We'll define the world as a collection of discrete states.

" States are connected if we can get from one state to another by
taking a particular action.

"~ The set of all possible states is called the state space.
" State:
" Is this the goal state? (is_goal function)

* What states are connected to this state? (next states function)

PROBLEM SOLVING VIA SEARCH

Search variants implemented

def dfs(start_state):
* add the start state to to_visit s = Stack()

return search(start_state, s)

" Repeat
def bfs(start_state):
oL g = Queve()
- take a state Oﬁ: the to_visit ||St return search(start_state, q)
~ ifit's the g0a| state def search(start_state, to_visit):

to_visit.add(start_state)
> I |
were Ci()r1€3. while not to_visit.is_empty():
current = to_visit.remove()
it it's not the goal state . .
if current.is_goal():
return current

* Add all of the next possible else:

e . for s in current.next_states():
states to the to_visit list to_visit.add(s)

return None

PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result
return None

* QOrder: 1,2,5

PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result
return None

* Order:1,2,5,3,6,9,7,8

PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

>

>

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result
return None

Order:1,2,5,3,6,9,7, 8

What search algorithm is this?

PROBLEM SOLVING VIA SEARCH

In what order would this variant visit the states?

def search(state):
if state.is_goal(): 1

return state

else:
for s in state.next_states(): ‘2\ 3

result = search(s)

if result != None:

return result

return None

* Order:1,2,5,3,6,9,7,8

~ DEFS!

PROBLEM SOLVING VIA SEARCH

DFS with a stack

def dfs(start_state):
s = Stack()
return search(start_state, s)

def search(start_state, to_visit):
to_visit.add(start_state)

while not to_visit.is_empty():
current = to_visit.remove()

if current.is_goal():
return current

else:

for s in current.next_states():

to_visit.add(s)

return None

* QOrder:1,4,3,8,7,6,9,2,5

PROBLEM SOLVING VIA SEARCH

One last DFS variant

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result
return None

def dfs(state):
if state.is_goal():
return [state]
else:
result = []

for s in state.next_states():

result += dfs(s)
return result

* How is this different?

PROBLEM SOLVING VIA SEARCH

One last DFS variant

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result != None:
return result
return None

def dfs(state):
if state.is_goal():
return [state]
else:
result = []

for s in state.next_states():
result += dfs(s)
return result

" Return ALL solutions found, not just one.

TODAY'S LECTURE IN A NUTSHELL

15

Lecture 18: Problem solving via search and matrices

» Problem solving via search
» Matrices

» Assignment @

MATRICES

What is a matrix?

» A matrix is a two-dimensional structure, e.g.,
010

182
503

» It has rows and columns.
» The secondrowis: 182

» The second column is:
1

8
0

» Since we are computer scientists, we'll start indexing at 0. That means that the first row
is row 0 and the first column is column 0.

MATRICES

Indexing into matrices

» Individual entries in a matrix can be references by specifying a row and a column.

» 010
182
503

» Let’s say that the matrix above is called m, what entry does m[1][2] represent?
» In math, we might write this as m(1, 2).
» 1 =second row, 2 = third column, thatis m[1][2] is 2.

» How would we get at the 3 in the above matrix?

» m[2][2]

MATRICES

Implementing matrices in Python

» We can use lists of lists!

>>2

>>2>

[0,

>>2>

2
>>>

3

m=[[0, 1, 01, [1, 8, 21, [5, 0, 31]
m

1, 01, [1, 8, 21, [5, 6, 311

m[1][2]

m[2][2]

» Could also have constructed this as:

>>2>

>>2>

>>2>

>>2>

>>>

[[o,

>>2>

2
>>>

3

m= []
m.append([0,1,0])
m.append([1, 8, 2])
m.append([5, 0, 31)
m

1, el, [1, 8, 2], [5, 0, 3]]
m[1][2]

m[2][2]

MATRICES

Implementing matrices in Python

» what does m[1] represent?

» the second row!

>>> m[1]
[1, 8, 2]

» matrices are just lists of lists.

MATRICES

matrix.py
» what do zero_matrix and >>> zero_matrix(3)
zero_matrix2 do? [[e, o, o], [0, @, 0], [0, 6, O]]

>>> zero_matrix2(2)
» They both create a s1ze X [[6, 0], [0, O]]

s1ze matrix with all entries >>> zero_matrix(1)

zero. [[0]]

| >>> m = zero_matrix(2)
» zero_matrix does this an S>>

entry at a time. [[0, 6], [0, 0]]
>>> m[1][1] = 100
>2>22

[[6, 0], [0, 100]]

» zero_matrixZ does this a row
at a time.

MATRICES

matrix.py

» what does random_matrix do?

» It createsa si1ze X S1ze matrix with random ints between 0
and s1ze X silze

>>> random_matrix(3)
[[6, 2, 11, [2, 6, 11, [0, 3, 9]]
>>> random_matrix(3)
[[5, 3, 91, [7, 4, 11, [8, 2, 311
>>> random_matrix(3)
[[6, 9, 71, [8, 4, 71, [1, 6, 5]]

MATRICES

matrix.py

» How would we print out a matrix in a more normal form (one row at a time)?
» iterate through the rows and print each out.
» Look atthe print_matrix and print_matrix2 function.
» What does the 1dent1ity function do?
» It creates an identity size by size matrix with all zeros except for ones along the diagonal
» How would we sum up all the numbers in a matrix?
» lterate over each entry and add them up
» Look at the matrix_sum function.
» What does Len(m) give us?
» the number of rows (remember, list of lists)
» what does Len(m[row]) give us?
» the number of columns (in that row, technically)
» Look atthe matrix_sumZ2 and matrix_sum3 functions.

» They use the sum function to sum up each row and then add that to the total.

MATRICES

copying matrices

» Be careful when you want to create a deep copy of a matrix. See
the code below. What's the problem?

>>>m = [[1, 2], [3, 4]]
>>>n = m[:]
>>> n[0][0] = 0O

>22 N

[[e, 2], [3, 4]]
>>>

[[e, 2], [3, 4]l

MATRICES

copying matrices

» If you want to copy a matrix and
avoid aliasing issues, you should
either:

» use the copy module
import copy
copy .deepcopy(m)

» or by creating a deep copy of
each row and appending it to
a new list.

>>>m = [[1, 2], [3, 4]]

>>>n = []

>>> for row in m:
n.append(row[:])

>22 N

[[1, 2], [3, 4]]
>>> n[0][0] = ©
S>>

[[6, 2], [3, 4]]
>>> M

[[1, 2], [3, 4]]

MATRICES

tic_tac_toe.py

» How would you represent a tic tac toe board?
» As a 3 by 3 matrix.
» Each entry has one of three values:
» empty
» X

» O

TODAY'S LECTURE IN A NUTSHELL

26

Lecture 18: Problem solving via search and matrices

» Problem solving via search
» Matrices

» Assignment 9

ASSIGNMENT 9

N-queens problem

» Place N queens on an N by N chess board such that none of the N
queens are attacking any other queen.

Solution(s)?

ASSIGNMENT ¢

N-queens problem

» Place N queens on an N by N chess board such that none of the N
queens are attacking any other queen.

ASSIGNMENT 9

N-queens problem

» Place N queens on an N by N chess board such that none of the N
queens are attacking any other queen.

Solution(s)?

ASSIGNMENT ¢

N-queens problem

» Place N queens on an N by N chess board such that none of the N
queens are attacking any other queen.

» How do we solve this with search:
» What is a state?
» What is the start state?
» What is the goal?

» How do we transition from one state to the next?

PROBLEM SOLVING VIA SEARCH

Search algorithm

* add the start state to to_visit

>

Repeat

>

take a state off the to_visit list

" if it's the goal state s this a goal state?

" we're done!
" ifit's notthe goal state \What states can | get to from the current state?
= Add all of the next possible states to the to_visit list

> Any problem that we can define these three things can be plugged into the search
algorithm!

ASSIGNED READINGS AND PRACTICE PROBLEMS

32

Resources

» sedarch_variants.py

» matrix.py

» tic_tac_toe.py

» https://en.wikipedia.org/wiki/Eight_queens_puzzle

Homework

» Assignment 9

https://cs.pomona.edu/classes/cs51a/assignments/assign9.pdf
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/search_variants.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/matrix.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture18/tic_tac_toe.txt
https://en.wikipedia.org/wiki/Eight_queens_puzzle

