CS051A
 INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

17: Search

Alexandra Papoutsaki
she/her/hers
Lectures

Lecture 17: Search

, Search

What is AI?

Think like a human Cognitive Modeling	Think rationally Logic-based Systems
Act like a human Turing Test	Act rationally Rational Agents

What is AI?

Next couple of weeks

Solve the maze!

Solve the maze!

Solve the maze!

How did you figure it out?

Solve the maze!

One approach

What now?

One approach

Three choices

One approach

Pick one!

One approach

What now?

One approach

Still three options!

One approach

Still three options!
Which would you explore/pick?

One approach

Most people go down a single path until they realize that it's wrong

One approach

Keep exploring

One approach

What now?

One approach

Keep exploring

One approach

Are we stuck?

One approach

Are we stuck?
No. Yellow positions are just possible options we haven't explored

One approach

One approach

How do we know not to go here?

One approach

We have to be careful and keep track of where we've been in case we loop back to a previously visited location

One approach

What now?

One approach

Keep exploring

One approach

One approach

One approach

Keep exploring

One approach

Keep exploring

One approach

What now?

One approach

Keep exploring

One approach

Keep exploring

One approach

Search problems

What information do we need to figure out a solution?

Search problems

- Where to start.
- Where to finish (goal).
"What the "world" (in this case a maze) looks like.
- We'll define the world as a collection of discrete states.
- States are connected if we can get from one state to another by taking a particular action.
* The set of all possible states is called the state space.

State space example

How many more states are there?

State space example

Search algorithm

Keep track of a list of states that we could visit; we'll call it to_visit.
General idea:
| take a state off the to_visit list

- if it's the goal state
- we're done!
- if it's not the goal state
- Add all of the next possible states to the to_visit list
, repeat
- take a state off the to_visit list
- if it's the goal state
to_visit
we're done!
- if it's not the goal state

Add all of the next possible states to the to_visit list

- if it's not the goal state

Add all of the next possible states to the to_visit list

- if it's not the goal state

Add all of the next possible states to the to_visit list

Add all of the next possible states to the to_visit list

- take a state off the to_visit list
- if it's the goal state
we're done!
- if it's not the goal state

Add all of the next possible states to the to_visit list

Add all of the next possible states to the to_visit list

Add all of the next possible states to the to_visit list

take a state off the to_visit list

- if it's the goal state
we're done!
- if it's not the goal state
to_visit

Add all of the next possible states to the to_visit list

- take a state off the to_visit list
- if it's the goal state
we're done!
- if it's not the goal state

Add all of the next possible states to
 the to_visit list

Add all of the next possible states to the to_visit list
 the to_visit list

- take a state off the to_visit list
- if it's the goal state we're done!
to_visit

4

It's a stack! (LIFO)

- if it's not the goal state

Add all of the next possible states to the to_visit list

Add all of the next possible states to the to_visit list

Search algorithms

- add the start state to to_visit
- Repeat
- take a state off the to_visit list
- if it's the goal state
- we're done!
- if it's not the goal state
- Add all of the next possible states to the to_visit list

Search algorithms

- add the start state to to_visit
- Repeat
- take a state off the to_visit list
- if it's the goal state
* we're done!
- if it's not the goal state
* Add all of the next possible states to the to_visit list
- Depth first search (DFS): to_visit is a stack
* Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states assuming states are added to to_visit left to right?

- add the start state to to_visit
* Repeat
- take a state off the to_visit list
- if it's the goal state
- we're done!
* if it's not the goal state
- Add all of the next states to the to_visit list
- Depth first search (DFS): to_visit is a stack
* Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states?

- DFS:

What order will BFS and DFS visit the states?

- DFS: 1

What order will BFS and DFS visit the states?

- DFS: 1, 4

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS:

1

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1
$2 \mid 34$

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2

$$
3 \mid 4
$$

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2

$$
3345
$$

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2, 3

$$
45
$$

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2, 3

$$
\begin{array}{|l|l|l|l|}
\hline 4 & 5 & 6 & 7 \\
\hline
\end{array}
$$

QUEUE

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2, 3, 4

$$
\begin{array}{|l|l|l|}
\hline 5 & 6 & 7 \\
\hline
\end{array}
$$

QUEUE

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2, 3, 4, 5
$6|7| 8$

QUEUE

What order will BFS and DFS visit the states?

- DFS: 1, 4, 3, 8, 7, 6, 9, 2, 5

BFS: 1, 2, 3, 4, 5

Homework

- Assignment 8

