CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al

16: More classes

7 3 Alexandra Papoutsaki




TODAY'S LECTURE IN A NUTSHELL

Lecture 16: More classes

» Optional parameters

» Classes



OPTIONAL PARAMETERS 3

Optional parameters

» In some cases, it may make sense to be able to call a function with a
different number of parameters.

» if we call it with fewer, some of the parameters will take a default value.
» if we call it with more, we can assign those values.

» We have seen a few examples of this already:
» range(10) vs.range(1,10)

» 1 = [1, 2, 3]
1l.pop()vs1l.pop(l)

» These are called optional parameters.



OPTIONAL PARAMETERS

optional_parameters.py

» To specify an optional parameter, you declare them like normal parameters, but give
them a default value using '=".

» The function optional has two optional parameters, so we can call it with 1, 2, or 3

arguments.

>>> optional(10)

10

>>> optional(10, 4)

40

>>> optional(10, 4, 7)
47

» We can also specify parameters by name.

>>> optional(10, adder = 2)
12

» Look into the 11st_of_nums function.



TODAY'S LECTURE IN A NUTSHELL

Lecture 16: More classes

» Optional parameters

» Classes



CLASSES

queue_structure.py

» Remember, a "class" is the blueprint describing what data and methods an object will have.
» Look at the Queue class in queue_structure.py
» It has 5 methods (constructor, str, and three other methods)
» What data does it keep, i.e. what are the instance variables?
» just self.queue, which is a list

» The constructor has an optional parameter and can be called with either zero
parameters or with a list.

» if it's given a list as a parameter it *copies* it using slicing (:) and saves that away in
the instance variable.

» Why copy it? To avoid aliasing! Otherwise, the instance variables (self.queue)
would reference the same list as was passed in (a bad thing!)



CLASSES 7

queue_structure.py

» What does this class represent?

» A queue is a data structure (a structure to store data) that is implemented like a line/queue.
» First things to be added are the first things to be removed.
» This is known as FIFO (first in first out).

» add adds elements to the end of the list.

» remove removes elements from the front of the list.

» 1s_empty just checks if the queue has anything in it.

» Notice that underneath the covers, a queue is just a list. By hiding the list in the class, we have:
» provided a clear small set of methods that defines how we can interact with the object (the queue).
» hid the implementation details from whoever uses it.

» We used a list, but could have used something else.

» In a similar way, we could have added to the front of the list and removed from the back and still achieved exactly the
same functionality.



CLASSES 8

stack_structure.py

» What does the Stack class represent?

» A stack is a data structure that is implemented like a stack of plates.
» First things to be added are the last things to be removed.
» This is known as LIFO (last in first out).

» add adds elements to the top of the list.

» remove removes elements from the top of the list.

» 1Ss_empty just checks if the stack has anything in it.



CLASSES

Practice Time

» We're going to design a Fruit class. It will have the following
constructor and methods:

» def __init__(self, name, color):
self.name = name

self.color color

self.eaten False

self.age = 0

» 1S_eaten has zero parameters and returns a boolean indicating
whether or not the fruit is eaten.

» eat has zero parameters and "eats" the fruit.

» allergy_check takes a color and returns true if the fruit's color is
the same as the input color, false otherwise.

» age_fruit takes zero arguments and ages the fruit by a day

» __Str__ prints out a string version of the fruit

def main():

fruit = Fruit("banana", "yellow")
print(fruit)
print(fruit.allergy_check("red"))
fruit.age_fruit()

print(fruit)
print(fruit.is_eaten())
fruit.eat()
print(fruit.is_eaten())

yellow banana that is 0 days old
False
yellow banana that is 1 days old
False
True



CLASSES 10

rectangle3.py

» A third version of the Rectangle class that we saw last week.

>

Like the code from rectanglel. py, we keep track of the x,y coordinates of the bottom left corner
and the width and height

If we print out the rectangle we see the position of the rectangle and the area.

In the __str__ method, we call the area method.

Anytime you want to call another method from within the class you write self.method_name, e.g.,
self.area()

The equals method takes one parameter as input: another rectangle!
» in the body of the method then there are two rectangles: this (self) and another_rectangle

We can access the instance variables of the parameter rectangle (another_rectangle) in the
same way we can access self.



CLASSES

|dentity

» When you create an object in
Python, it has a unique id

» You can find it using the 1d

function which returns a long int.

» Exception: small numbers
(between -5 and 256) and some
strings that are equal, have the
same id.

>>> 1istl = [1, 2, 3]
>>> id(listl)
140178080343104

>>> X = 2
>>> id(x)
140178605926736
>>> y = 2
>>> id(y)
140178605926736

>>> 1istl = [1, 2, 3]
>>> 1ist2 = [1, 2, 3]
>>> id(listl)
140178080351360

>>> id(list2)
140178080351680

11



CLASSES

ldentity vs equality

» When using the 1S operator,
Python compares ids.

» When using the == operator,
Python compares contents of the
objects.

» Exception: for small ints and
some strings, 1S and == will
return the same results.

>2>22 X

>>> Y

>>2>2 X ==
True
>>> X 1S
True

>>> T1listl
>>> 1list2
>>> 1istl
False
>>> listl
True

12

= [1, 2, 3]
= [1, 2, 3]
1s list?2

== Tlist2



CLASSES 13

__eg__ method

» When creating custom classes, you can implement the

__eqg__ method which allows you to compare two objects
of your class using the == operator.

» Look atthe __eqg__ method in rectangle3.py and how
it is implicitly used in the main function.



ASSIGNED READINGS AND PRACTICE PROBLEMS

14

Resources

» Textbook: Chapter 17 and Chapter 18

» optional_parameters.py
» gueue_structure.py

» stack_structure.py

» fruit.py

» rectangle3.py

Homework

» Assignment 8



https://runestone.academy/ns/books/published/thinkcspy/ClassesBasics/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/ClassesDiggingDeeper/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/optional_parameters.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/queue_structure.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/stack_structure.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/fruit.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/Rectangle3.txt
https://cs.pomona.edu/classes/cs51a/assignments/assign8.pdf

