
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

16: More classes

Alexandra Papoutsaki

she/her/hers

Lectures

03-27-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: More classes

▸ Optional parameters

▸ Classes

2

OPTIONAL PARAMETERS

Optional parameters

▸ In some cases, it may make sense to be able to call a function with a
different number of parameters.

▸ if we call it with fewer, some of the parameters will take a default value.

▸ if we call it with more, we can assign those values.

▸ We have seen a few examples of this already:

▸ range(10) vs. range(1,10)

▸ l = [1, 2, 3]  
l.pop() vs l.pop(1)

▸ These are called optional parameters.

3

OPTIONAL PARAMETERS

optional_parameters.py

▸ To specify an optional parameter, you declare them like normal parameters, but give
them a default value using ‘='.

▸ The function optional has two optional parameters, so we can call it with 1, 2, or 3
arguments. 
 
 
 

▸ We can also specify parameters by name. 
 
 

▸ Look into the list_of_nums function.

4

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: More classes

▸ Optional parameters

▸ Classes

5

CLASSES

queue_structure.py

▸ Remember, a "class" is the blueprint describing what data and methods an object will have.

▸ Look at the Queue class in queue_structure.py

▸ It has 5 methods (constructor, str, and three other methods)

▸ What data does it keep, i.e. what are the instance variables?

▸ just self.queue, which is a list

▸ The constructor has an optional parameter and can be called with either zero
parameters or with a list.

▸ if it's given a list as a parameter it *copies* it using slicing (:) and saves that away in
the instance variable.

▸ Why copy it? To avoid aliasing! Otherwise, the instance variables (self.queue)
would reference the same list as was passed in (a bad thing!)

6

CLASSES

queue_structure.py

▸ What does this class represent?

▸ A queue is a data structure (a structure to store data) that is implemented like a line/queue.

▸ First things to be added are the first things to be removed.

▸ This is known as FIFO (first in first out).

▸ add adds elements to the end of the list.

▸ remove removes elements from the front of the list.

▸ is_empty just checks if the queue has anything in it.

▸ Notice that underneath the covers, a queue is just a list. By hiding the list in the class, we have:

▸ provided a clear small set of methods that defines how we can interact with the object (the queue).

▸ hid the implementation details from whoever uses it.

▸ We used a list, but could have used something else.

▸ In a similar way, we could have added to the front of the list and removed from the back and still achieved exactly the
same functionality.

7

CLASSES

stack_structure.py

▸ What does the Stack class represent?

▸ A stack is a data structure that is implemented like a stack of plates.

▸ First things to be added are the last things to be removed.

▸ This is known as LIFO (last in first out).

▸ add adds elements to the top of the list.

▸ remove removes elements from the top of the list.

▸ is_empty just checks if the stack has anything in it.

8

CLASSES

Practice Time

▸ We're going to design a Fruit class. It will have the following
constructor and methods:

▸ def __init__(self, name, color):

 self.name = name

 self.color = color

 self.eaten = False

 self.age = 0

▸ is_eaten has zero parameters and returns a boolean indicating
whether or not the fruit is eaten.

▸ eat has zero parameters and "eats" the fruit.

▸ allergy_check takes a color and returns true if the fruit’s color is
the same as the input color, false otherwise.

▸ age_fruit takes zero arguments and ages the fruit by a day

▸ __str__ prints out a string version of the fruit

9

CLASSES

rectangle3.py

▸ A third version of the Rectangle class that we saw last week.

▸ Like the code from rectangle2.py, we keep track of the x,y coordinates of the bottom left corner
and the width and height

▸ If we print out the rectangle we see the position of the rectangle and the area.

▸ In the __str__ method, we call the area method.

▸ Anytime you want to call another method from within the class you write self.method_name, e.g.,
self.area()

▸ The equals method takes one parameter as input: another rectangle!

▸ in the body of the method then there are two rectangles: this (self) and another_rectangle

▸ We can access the instance variables of the parameter rectangle (another_rectangle) in the
same way we can access self.

10

CLASSES

Identity

11

▸ When you create an object in
Python, it has a unique id

▸ You can find it using the id
function which returns a long int. 

▸ Exception: small numbers
(between -5 and 256) and some
strings that are equal, have the
same id.

CLASSES

Identity vs equality

12

▸ When using the is operator,
Python compares ids.

▸ When using the == operator,
Python compares contents of the
objects.

▸ Exception: for small ints and
some strings, is and == will
return the same results.

CLASSES

__eq__ method

13

▸ When creating custom classes, you can implement the
__eq__ method which allows you to compare two objects
of your class using the == operator.

▸ Look at the __eq__ method in rectangle3.py and how
it is implicitly used in the main function.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 17 and Chapter 18

▸ optional_parameters.py

▸ queue_structure.py

▸ stack_structure.py

▸ fruit.py

▸ rectangle3.py

14

Homework

▸ Assignment 8

https://runestone.academy/ns/books/published/thinkcspy/ClassesBasics/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/ClassesDiggingDeeper/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/optional_parameters.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/queue_structure.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/stack_structure.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/fruit.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture16/Rectangle3.txt
https://cs.pomona.edu/classes/cs51a/assignments/assign8.pdf

