
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

15: Classes

Alexandra Papoutsaki

she/her/hers

Lectures

03-22-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 15: Classes

▸ Objects

▸ Classes

2

OBJECTS

Objects

▸ Software bundles that maintain their states/data in
variables and implement their behavior with methods.

▸ For example, a list is an object:

3

OBJECTS

Method types

▸ Mutators: change or mutate the state/data of the object.

▸ Accessors: do not change the state/data of the object, only
ask questions about it.

▸ You can look at all of the methods available for an object
using help. e.g.,

▸  
or by passing the type of the object:

4

OBJECTS

Constructors

▸ Every object has a special method called constructor.

▸ A constructor has the same name as the type of the object
and can be called on it's own to "construct" a new object.

▸ Many of the methods we've actually been using already
are actually constructors which construct a new object of
that type:

5

OBJECTS

Constructors

▸ Some objects, like lists and tuples, have special ways of
constructing them, but they, too, have constructors.

▸

6

TODAY’S LECTURE IN A NUTSHELL

Lecture 15: Classes

▸ Administrative

▸ Objects

▸ Classes

7

CLASSES

Classes

▸ A class is the blueprint describing what data and methods an object will have.

▸ An object is an instance of a class.

▸ For example, we could define a class Person.

▸ A person has certain attributes, like name, age, place of birth, etc.

▸ A person has certain methods, e.g., says their name, moves residence.

▸ When we define a particular person, it is an object, that is an instance of the
class Person.

▸ classes define types. In Python, since all things are objects, then they all
represent instances of objects. Though in other languages, you could have a
type that is not defined by a class.

8

CLASSES

Defining our own classes

▸ Syntax:

▸ class NameOfClass:  
 # methods in the class

▸ By convention, class names should start with a capital
letter. If they have multiple words, capitalize each word but
do NOT use underscores to separate.

▸ this is called “camel case”.

9

CLASSES

Look at Person class in person.py

▸ 5 methods

▸ 2 “special” methods

▸ methods that are surrounded by two underscores on
each side are "special" methods. They are generally NOT
called directly.

▸ __init__ defines the constructor for the method.

▸ __str__ defines what the object will be when it is used in a
string context, e.g., when printed.

10

CLASSES

self

▸ self is a variable that allows us to store data and retrieve data in an object.

▸ self is a reference to the current object.

▸ It should be the first parameter to every method in a class (not totally true, but fine
for this class)

▸ Though you do NOT include it when you call the methods (this is a little annoying,
but you'll get used to it). This is also how we indicate that a function is a method

▸ We can access the "data" associated with a class by using self,

▸ e.g. self.x = 10

▸ Creates a new instance variable (variable associated with this object) called x
and assigns it the value 10.

11

CLASSES

__init__ method in Person class

▸ Takes self and two parameters.

▸ All it does is save these parameters into an object.

▸ self.name creates a new instance variable called name
and stores persons_name into it.

12

CLASSES

Other methods in Person class

▸ get_X methods:

▸ these are accessor methods, they give us information back.

▸ Notice that they only take self as a parameter and use that
to give back characteristics about the object.

▸ __str__

▸ it doesn't take any parameters (except self) and must
return a string.

13

CLASSES

Using classes

▸ Look into the main function:

▸ It creates two instances of the Person class and stores them in
separate variables.

▸ Person(...) is a call to the constructor (__init__ method)

▸ It goes through a week (days 1 to 7) and each day “prints out” the
two people:

▸ print(p1) will call the __str__ method on p1.

▸ Uses the accessor methods (get_X) to ask questions about the two
Person objects.

14

CLASSES

Practice Time

▸ Write a class called Rectangle:

▸ Four instance variables: x1, y1, x2, y2.

▸ Write the constructor __init__.

▸ Write a method area that returns the area of the
rectangle.

▸ Look into rectangle.py

15

CLASSES

Why classes?

▸ Encapsulation!

▸ Look at the Rectangle class in rectangle2.py code.

▸ We have the same constructor and area method, however, we have different
internal representation.

▸ We store the bottom left corner, width and height.

▸ Notice that we can ask the exact same question about its area using this
representation.

▸ Anyone using the Rectangle class should NOT care which implementation we use

▸ Both have the same set of methods and the same functionality.

▸ This is the power of using classes, a general framework called object-oriented
programming.

16

CLASSES

Why classes?

▸ Modularity

▸ functions create single units that we can use to build up other functions.

▸ In the same way, classes allow us to create functional units (in this cases a
class of objects with a particular behavior).

▸ Data sharing

▸ classes allow us to share data between methods/functions without having to
have them as explicitly parameters.

▸ this can be very useful (we'll see an example of this for the next assignment).

▸ Avoid naming conflicts

17

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 17 and Chapter 18

▸ person.py

▸ rectangle.py

▸ rectangle2.py

18

Homework

▸ Assignment 7 (cont'd)

https://runestone.academy/ns/books/published/thinkcspy/ClassesBasics/toctree.html
https://runestone.academy/ns/books/published/thinkcspy/ClassesDiggingDeeper/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture15/person.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture15/rectangle.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture15/rectangle2.txt
https://cs.pomona.edu/classes/cs51a/assignments/assign7.pdf

