CS051A
 INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI
 14: Machine learning and Naïve Bayes

Alexandra Papoutsaki
she/her/hers
Lectures

Lecture 14: Machine learning and Naïve Bayes

- Machine Learning
- Naïve Bayes

Machine Learning

- Machine learning is about predicting the future based on the past.
- Hal Daume III

Machine Learning

- Machine learning is about predicting the future based on the past.
- Hal Daume III

Different types of data

examples

examples

Supervised learning: given labeled examples

Supervised learning: given labeled examples build a model/predictor

Supervised learning: learn to predict new example

Supervised learning: classification

label
apple
apple
Classification: a finite set of labels
banana
banana

Classification Example

Classification Applications

- Face recognition
- Character recognition
- Spam detection
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Supervised learning: regression

Regression: label is real-valued

Regression example

- Price of a used car
| x : car attributes
(e.g., mileage)
- y : price

Regression Applications

- Economics/Finance: predict the value of a stock
- Epidemiology
- Car/plane navigation: angle of the steering wheel, acceleration, ...
- Temporal trends: weather over time

Supervised learning: ranking

Ranking: label is a ranking

Ranking example

Given a query and a set of web pages, rank them according to relevance

Google machine learning

About 130,000,000 results (0.26 seconds)
Machine learning - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Machine_learning •
Machine learning, a branch of artificial intelligence, concerns the construction and study of systems that can learn from data. For example, a machine learning Artificial intelligence - Supervised learning - List of machine learning ... - Weka Franck Dernoncourt +1'd this

CS 229: Machine Learning
cs229.stanford.edu/
Check out this year's awesome projects at Fall 2012 Projects. Come check out the coo new projects during the CS229 Poster Session this Thursday December ...
You've visited this page 2 times. Last visit: $8 / 14 / 13$

Machine Learning | Coursera
https://www.coursera.org/course/ml
Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving Franck Dermoncourt and 3 other people $+1^{\prime} \mathrm{d}$ this

Machine Learning Department - Carnegie Mellon University www.mi.cmu.edu/
Large group with projects in robot learning, data mining for manufacturing and in multimedia databases, causal inference, and disclosure limitation.

Machine Learning - MIT OpenCourseWare
ocw.mit.edu , Courses , Electrical Engineering and Computer Science 6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with ..

Ranking Applications

, User preference, e.g., Netflix "My List" -- movie queue ranking

- Spotify
- flight search (search in general)

Unsupervised learning: given data/examples but no labels

Unsupervised learning applications

- learn clusters/groups without any label
- customer segmentation (i.e. grouping)
- image compression
- bioinformatics: learn motifs

Reinforcement learning

- Given a sequence of examples/states and a reward after completing that sequence, learn to predict the action to take in for an individual example/state

left, right, straight, left, left, left, straight	GOOD
left, straight, straight, left, right, straight, straight	BAD
left, right, straight, left, left, left, straight	18.5
left, straight, straight, left, right, straight, straight	-3

Reinforcement learning example

- Backgammon

LOSE!

- Given sequences of moves and whether or not the player won at the end, learn to make good moves.

Representing examples

- What is an example?

> examples
, How is it represented?

Features examples

features
$f_{1}, f_{2}, f_{3}, \ldots, f_{n}$
$f_{1}, f_{2}, f_{3}, \ldots, f_{n}$
$f_{1}, f_{2}, f_{3}, \ldots, f_{n}$
$f_{1}, f_{2}, f_{3}, \ldots, f_{n}$$|$

- How our algorithms actually "view" the data
- Features are the questions we can ask about the examples

Features

examples

features
red, round, leaf, 3oz, ...
green, round, no leaf, 4oz, ...
yellow, curved, no leaf, 80z, ...
green, curved, no leaf, 7oz, ...
bow our algorithms actually "view" the data

Features are the questions we can ask about the examples

Classification revisited
examples
red, round, leaf, 3oz, ...
green, round, no leaf, 4oz, ... yellow, curved, no leaf, 8oz, ... green, curved, no leaf, 7oz, ...
label
apple
apple
banana

banana

- During learning/training/induction, learn a model of what distinguishes apples and bananas based on the features.

Classification revisited

The model can then classify a new example based on the features.

Classification revisited

Why?
The model can then classify a new example based on the features.

Classification revisited

Training data
examples
red, round, leaf, 3oz, ...
green, round, no leaf, $40 z, \ldots$ apple
yellow, curved, no leaf, 4oz, ... banana
green, curved, no leaf, 50z, ... banana
apple
Test set
label

Classification revisited

Training data		Test set
examples	label	
red, round, leaf, 3oz, ...	apple	
green, round, no leaf, 40z,...	apple	red, round, no leaf, 4oz, ...?
yellow, curved, no leaf, 4oz, ...	banana	Learning is about generalizing from the training data
green, curved, no leaf, 50z, ...	banana	

Models

- We have many, many different options for the model
- They have different characteristics and perform differently (accuracy, speed, etc.)

Probabilistic modeling

Model the data with a probabilistic model which tells us how likely a given data example is

Probabilistic models

Probabilistic models

For each label, ask for the probability

Probabilistic models

Pick the label with the highest probability

Probability basics

- A probability distribution gives the probabilities of all possible values of an event
- For example, say we flip a coin three times. We can define the probability of the number of times the coin came up heads.

$P($ num heads $)$
$P(3)=?$
$P(2)=?$
$P(1)=?$
$P(0)=?$

Probability distributions

- What are the possible outcomes of three flips (hint, there are eight of them)?

$$
\begin{aligned}
& \text { TTT } \\
& \text { TTH } \\
& \text { THT } \\
& \text { THH } \\
& \text { HTT } \\
& \text { HTH } \\
& \text { HHT } \\
& \text { HH }
\end{aligned}
$$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
TH H
H T T
H T H
H H T
H H H

$P($ num heads)
$P(3)=?$
$P(2)=?$
$P(1)=?$
$P(0)=?$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
TH H
H T T
H T H
H H T
H H H

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=? \\
& P(2)=? \\
& P(1)=? \\
& P(0)=?
\end{aligned}
$$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
THH
H T T
H T H
H H T
H H H

$P($ num heads $)$
$P(3)=1 / 8$
$P(2)=?$
$P(1)=?$
$P(0)=?$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
TH H
H T T
H T H
H H T
H H H

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=1 / 8 \\
& P(2)=? \\
& P(1)=? \\
& P(0)=?
\end{aligned}
$$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
THH
H T T
H T H
H H T
H H H

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=1 / 8 \\
& P(2)=3 / 8 \\
& P(1)=? \\
& P(0)=?
\end{aligned}
$$

Probability distributions

- Assuming the coin is fair, what are our probabilities?

$$
\text { probability }=\frac{\text { number of times it happens }}{\text { total number of cases }}
$$

T T T
T T H
THT
TH H
H T T
H T H
H H T
H H H

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=1 / 8 \\
& P(2)=3 / 8 \\
& P(1)=3 / 8 \\
& P(0)=1 / 8
\end{aligned}
$$

Probability distributions

- A probability distribution assigns probability values to all possible values.
- Probabilities are between 0 and 1, inclusive.
- The sum of all probabilities in a distribution must be 1.

$$
\begin{aligned}
& P(\text { num heads) } \\
& \hline P(3)=1 / 8 \\
& \hline P(2)=3 / 8 \\
& P(1)=3 / 8 \\
& \hline P(0)=1 / 8
\end{aligned}
$$

Probability distributions

- A probability distribution assigns probability values to all possible values.
- Probabilities are between 0 and 1, inclusive.
- The sum of all probabilities in a distribution must be 1.

Examples of probability distributions

- probability of heads
- (distribution options: heads, tails)
- probability of passing class
- (distribution options: pass, fail)
- probability of rain today
- (distribution options: rain or no rain)
- probability of getting an ' A '
- (distribution options: A, B, C, D, F)

Conditional probability distributions

- Sometimes we may know extra information about the world that may change our probability distribution.
- $P(X \mid Y)$ captures this (read "probability of X given $Y^{\prime \prime}$)
- Given some information (Y) what does our probability distribution look like?
- Note that this is still just a typical probability distribution.

Conditional probability example

```
P(pass 51a)
P(pass) = 0.9
P(not pass) = 0.1
```

Unconditional probability distribution

Conditional probability example

Conditional probability example

```
P(rain in LA)
P(rain) = 0.05
P(no rain) = 0.95
```

Unconditional probability distribution

Conditional probability example

Unconditional probability distribution
P(rain in LA | January)
$P($ rain $)=0.2$
$P($ no rain $)=0.8$
Still probability distributions over raining in LA

$$
\begin{aligned}
& P(\text { rain in LA | not January }) \\
& P(\text { rain })=0.03 \\
& P(\text { no rain })=0.97
\end{aligned}
$$

Conditional probability distribution

Joint distribution

- Probability over two events: $P(X, Y)$
- Has probabilities for all possible combinations over the two events.

| $\mathbf{5 1}$ Pass, EngPass | $\mathbf{P (5 1 P a s s , \text { EngPass) }}$ |
| :--- | ---: | :--- |
| true, true | 0.88 |
| true, false | 0.01 |
| false, true | 0.04 |
| false, false | 0.07 |

Joint distribution

- Still a probability distribution
- All questions/probabilities that we might want to ask about these two events can be calculated from the joint distribution.

$\mathbf{5 1}$ Pass, EngPass	$\mathbf{P (5 1 P a s s ,}$ EngPass)
true, true	0.88
true, false	0.01
false, true	0.04
false, false	0.07

What is $\mathrm{P}(51$ Pass = true $)$?

Joint distribution

- There are two ways that a person can pass 51: they can do it while passing or not passing English
$P(51$ Pass $=$ true $)=P($ true, true $)+P($ true, false $)=0.89$

51 Pass, EngPass	$\mathbf{P (5 1 P a s s ,}$ EngPass)
true, true	0.88
true, false	0.01
false, true	0.04
false, false	0.07

Relationship between distributions

- Can think of it as describing the two events happening in two steps:
- The likelihood of X and Y happening:
- How likely it is that Y happened?
- Given that Y happened, how likely is it that X happened?

Relationship between distributions

$$
P(51 \text { Pass, EngPass })=P(\text { EngPass }) * P(51 \text { Pass } \mid \text { EngPass })
$$

- The probability of passing CS51 and English is:
- Probability of passing English *
- Probability of passing CS51 given that you passed English.

Can also view it with the other event happening first:

$$
P(51 \text { Pass, EngPass })=P(51 \text { Pass }) * P(\text { EngPass } \mid 51 \text { Pass })
$$

- The probability of passing CS51 and English is:
- Probability of passing CS51 *
- Probability of passing English given that you passed CS51.

Lecture 14: Machine learning and Naïve Bayes

- Machine Learning
- Naïve Bayes

Back to probabilistic modeling

Build a model of the conditional distribution:

P(label \| data)

How likely is a label given the data

Back to probabilistic modeling

- For each label, calculate the probability of the label given the data.

Back to probabilistic modeling

- Pick the label with the highest probability.

Naïve Bayes model

- Two parallel ways of breaking down the joint distribution.

- What is P(label|data)?

Naïve Bayes model

- Bayes' rule

$$
\begin{gathered}
P(\text { label }) * P(\text { data } \mid \text { label })=P(\text { data }) * P(\text { label } \mid \text { data }) \\
P(\text { label } \mid \text { data })=\frac{P(\text { label }) * P(\text { data } \mid \text { label })}{P(\text { data })}
\end{gathered}
$$

Naïve Bayes

$$
P(\text { label } \mid \text { data })=\frac{P(\text { label }) * P(\text { data } \mid \text { label })}{P(\text { data })}
$$

One observation

- For picking the largest, P(data) doesn't matter.

$$
\frac{P(\text { positive }) * P(\text { data } \mid \text { positive })}{P(\text { data })}
$$

MAX

$$
\frac{P(\text { negative }) * P(\text { data } \mid \text { negative })}{P(\text { data })}
$$

One observation

- For picking the largest, P(data) doesn't matter.

$$
\begin{aligned}
& P(\text { positive }) * P(\text { data } \mid \text { positive }) \\
& P(\text { negative }) * P(\text { data } \mid \text { negative })
\end{aligned}
$$

One observation

- If we assume that $P($ positive $)==P($ negative $)$, then

$$
\begin{aligned}
& P(\text { positive }) * P(\text { datalpositive }) \\
& P(\text { negative }) * P(\text { data } \mid \text { negative })
\end{aligned}
$$

, becomes

$$
\begin{aligned}
& P(\text { data|positive }) \\
& P(\text { data } \mid \text { negative })
\end{aligned}
$$

P(data|label)

$$
P(\text { data } \mid \text { label })=P\left(f_{1}, f_{2}, \ldots, f_{n} \mid \text { label }\right)
$$

$$
\begin{gathered}
\approx P\left(f_{1} \mid \text { label }\right) * \\
P\left(f_{2} \mid \text { label }\right) * \\
\ldots \\
P\left(f_{n} \mid \text { label }\right)
\end{gathered}
$$

- This is generally not true!
- However..., it makes our life easier.

This is why the model is called Naïve Bayes.

Naïve Bayes

Where do these come from?

Training Naïve Bayes

model:

P(label |data)

An aside: P (heads)

What is the P (heads) on a fair coin?
0.5

What if you didn't know that, but had a coin to experiment with?

$$
P(\text { heads })=\frac{\text { number of times heads came up }}{\text { total number of coin tosses }}
$$

P (feature|label)

$$
P(\text { heads })=\frac{\text { number of times heads came up }}{\text { total number of coin tosses }}
$$

- Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

$$
P(\text { feature } \mid \text { positive })=\frac{\text { number of positive examples with that feature }}{\text { total number of positive examples }}
$$

Training Naïve Bayes

- Count how many examples have each label.

For all examples with a particular label, count how many times each feature occurs.

Calculate the conditional probabilities of each feature for all labels:
$P($ feature \mid label $)=\frac{\text { number of "label" examples with that feature }}{\text { total number of examples with that label }}$

Classifying with Naïve Bayes

- For each label, calculate the product of $\mathrm{P}($ feature|label) for each label.

MAX

Naïve Bayes Text Classification

- Given examples of text in different categories, learn to predict the category of new examples
- Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

Positive

I loved it
I loved that movie
I hated that I loved it

Negative

I hated it
I hated that movie
I loved that I hated it

Text Classification Training

Positive
I loved it
I loved that movie
I hated that | loved it

Negative

I hated it
I hated that movie I loved that I hated it

- We'll assume words just occur once in any given sentence

Training the model

Positive

I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it

- For each word and each label, learn: P(word | label)

Training the model

Positive
I loved it
I loved that movie
I hated that loved it
\section*{Negative}
I hated it
I hated that movie
I loved that hated it
$\mathrm{P}(\mathrm{I} \mid$ positive $)=$?

$$
P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}
$$

Training the model

```
Positive
    I loved it
    I loved that movie
    I hated that loved it
P(I | positive)=3/3=1.0
```

$P($ word \mid label $)=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$

Training the model

Positive

I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it

```
P(I \| positive) \(\quad=1.0\)
P(loved | positive) = ?
```

 \(P(\) word \(\mid\) label \()=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}\)

Training the model

Positive

I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it

```
P(I | positive) = = 1.0
P(loved | positive) = 1.0
P(hated | positive) = ?
```

$P($ word \mid label $)=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$

Training the model

Positive
I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it
$P(I \mid$ negative $) \quad=1.0$

$\mathrm{P}(I \mid$ positive $)$	$=1.0$
$\mathrm{P}($ loved \| positive $)$	$=1.0$
$\mathrm{P}($ hated \| positive $)$	$=1 / 3$

$P($ word \mid label $)=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}$

Training the model

Positive

I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it

$$
P(I \mid \text { negative }) \quad=1.0
$$

$$
\mathrm{P} \text { (movie | negative) }=\text { ? }
$$

$\mathrm{P}(\mathrm{I} \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
P (loved \| positive $)$	$=1.0$	$\mathrm{P}($ movie \mid negative $)$	$=?$

Training the model

Positive

I loved it
I loved that movie
I hated that loved it

Negative

I hated it
I hated that movie
I loved that hated it

$\mathrm{P}(\mathrm{I} \mid$ positive $)$	$=1.0$	$\mathrm{P}(\mathrm{I} \mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive $)$	$=1.0$	$\mathrm{P}($ movie \mid negative $)$	$=1 / 3$
$\mathrm{P}($ hated \| positive $)$	$=1 / 3$	\ldots	

$$
P(\text { word } \mid \text { label })=\frac{\text { number of times word occured in "label" examples }}{\text { total number of examples with that label }}
$$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ (loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative)	$=1.0$
P (it \| positive)	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	$\mathrm{P}($ movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

- Notice that each of these is its own probability distribution

$$
P\left(f_{1} \mid \text { positive }\right) * P\left(f_{2} \mid \text { positive }\right) * \ldots * P\left(f_{n} \mid \text { positive }\right)
$$

Classifying

```
P(f}\mp@subsup{f}{1}{}|\mathrm{ negative ) * P(f f | negative ) *...* P(f}\mp@subsup{f}{n}{}|\mathrm{ negative }
```

$\mathrm{P}(\|\mid$ positive	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative $)$	$=1.0$
$\mathrm{P}($ it \| positive $)$	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

- How would we classify: "I hated movie"?
$\mathrm{P}(\mathrm{I} \mid$ positive) * $\mathrm{P}($ hated \mid positive $) * \mathrm{P}($ movie \mid positive $)=1.0 * 1 / 3 * 1 / 3=1 / 9$

```
P(I | negative) * P(hated | negative) * P(movie | negative) = 1.0 * 1.0* 1/3 = 1/3
```

$$
P\left(f_{1} \mid \text { positive }\right) * P\left(f_{2} \mid \text { positive }\right) * \ldots * P\left(f_{n} \mid \text { positive }\right)
$$

Classifying

```
P(f}\mp@subsup{f}{1}{}|\mathrm{ negative ) * P(f f | negative ) *...* P(f}\mp@subsup{f}{n}{}|\mathrm{ negative }
```

$\mathrm{P}(\|\mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative $)$	$=1.0$
$\mathrm{P}($ it \| positive $)$	$=2 / 3$	P (that \| negative)	$=2 / 3$
$\mathrm{P}($ that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

» How would we classify: "I hated the movie"?
$\mathrm{P}(\mathrm{I} \mid$ positive $) * \mathrm{P}($ hated \mid positive $) * \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \mid positive $)=$
$P(I \mid$ negative $) * P($ hated \mid negative $) * P($ the \mid negative $) * P($ movie \mid negative $)=$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ (loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative)	$=1.0$
P (it \| positive)	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

What are these?
$\mathrm{P}(\mathrm{I} \mid$ positive $) * \mathrm{P}($ hated | positive $) * \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \mid positive $)=$
$P(I \mid$ negative) * $P($ hated \mid negative $) * P($ the \mid negative $) * P($ movie \mid negative $)=$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative $)$	$=1.0$
P (it \| positive)	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	$\mathrm{P}($ movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

0! Is this is a problem?

$\mathrm{P}(\mathrm{I} \mid$ positive $) * \mathrm{P}($ hated | positive $) * \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \mid positive $)=$
$P(I \mid$ negative) * $P($ hated \mid negative $) * P($ the \mid negative $) * P($ movie \mid negative $)=$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative)	$=1.0$
P (it \| positive)	$=2 / 3$	$\mathrm{P}($ that \| negative $)$	$=2 / 3$
P (that \| positive)	$=2 / 3$	$\mathrm{P}($ movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

- Yes, they make the entire product go to 0 !
$\mathrm{P}(\mathrm{I} \mid$ positive $) * \mathrm{P}($ hated | positive $) * \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \mid positive $)=$
$P(I \mid$ negative) * $P($ hated \mid negative $) * P($ the \mid negative $) * P($ movie \mid negative $)=$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ (loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative)	$=1.0$
P (it \| positive)	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	P (movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

- Our solution: assume any unseen word has a small, fixed probability, e.g., in this example 1/10.
$\mathrm{P}(\mathrm{I} \mid$ positive $) * \mathrm{P}($ hated \mid positive $) * \mathrm{P}($ the \mid positive $) * \mathrm{P}($ movie \mid positive $)=$
$P(I \mid$ negative) * $P($ hated \mid negative $) * P($ the \mid negative $) * P($ movie \mid negative $)=$

Classifying

$\mathrm{P}(I \mid$ positive $)$	$=1.0$	$\mathrm{P}(\|\mid$ negative $)$	$=1.0$
$\mathrm{P}($ loved \| positive)	$=1.0$	$\mathrm{P}($ hated \| negative $)$	$=1.0$
P (it \| positive)	$=2 / 3$	P (that \| negative)	$=2 / 3$
P (that \| positive)	$=2 / 3$	$\mathrm{P}($ movie \| negative)	$=1 / 3$
P (movie \| positive)	$=1 / 3$	P (it \| negative)	$=2 / 3$
P (hated \| positive)	$=1 / 3$	P (loved \| negative)	$=1 / 3$

- Our solution: assume any unseen word has a small, fixed probability, e.g., in this example 1/10.

```
P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) = 1/90
```

$P\left(I \mid\right.$ negative) * $P\left(\right.$ hated | negative) ${ }^{*} P($ the \mid negative $) * P($ movie \mid negative $)=1 / 30$

Full disclaimer

- I've fudged a few things on the Naïve Bayes model for simplicity.
- Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine.

Homework

- No homework for the week
- Sign up for group presentations

