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TODAY’'S LECTURE IN A NUTSHELL
Lecture 13: Perceptron learning and back propagation

» Perceptron learning

» Back propagation



PERCEPTRON LEARNING

Artificial Neural Networks - Our approximation

Node (Neuron)

O
N\ "
o8
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Edge (synapses)
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PERCEPTRON LEARNING

Strength of signal

Node A Weight w Node B
O > O
(neuron) (neuron)

» W is the strength of signal sent between A and B.
» If A fires and w is positive, then A stimulates B.

» If A fires and w is negative, then A inhibits B.
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Firing a neuron

» A given neuron has many, many connecting, input neurons.
» If a neuron is stimulated enough, then it also fires.

» How much stimulation is required is determined by its threshold.
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A single neuron/perceptron

Input x4 Each input contributes:
Weight w, X * W,

Weight
Input x5 SgT W,

>
— /

Welght W3

p Output y

Input x4
threshold function
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Training neural networks

X1 X2 X3 y Input x4 -
Wy =7
0 0 0 1 Input x, @ Output y
0 1 0 0 Input X3 Wa= ?
1 0 0 1 » start with some initial
1 1 0 0 weights and thresholds
0 0 1 1 h | dl
» show examples repeatedly
0 1 1 1 to NN
1 0 1 1

» update weights/thresholds
1 1 1 0 by comparing NN output
to actual output
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Perceptron learning algorithm

» Repeat until you get all examples right:
» For each “training” example:
» Calculate current prediction on example
» If wrong:

» Update weights and threshold towards getting this
example correct.
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Perceptron learning

predicted

> 7

tual
0 Threshold of 1 a‘ilua

0.5
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10

Perceptron learning

Weighted sum is

1 0.5, which is not
equal or larger than
the threshold

predicted
1

1
-1 >
> 0
0.5

/ -
0 /reshold of 1 ailua
1

What could we adjust to make it right?
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Perceptron learning

\ predicted

- 0

.7;1reshod of 1 acitlual

This weight doesn’t matter, so don’t change
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Perceptron learning
1
1
predicted
> > 0
/ -
0 Threshold of 1 ac1ua
0.5
1 _ .
Could increase any of these weights
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Perceptron learning

Threshold of 1

Could decrease the threshold

predicted
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Perceptron update rule

» If wrong:

» Update weights and threshold towards getting this
example correct

y Wi = wi + Awi

» Awi = A * (actual — predicted) * xi

14
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Perceptron learning

\-1\
L > —pp predicted
1 —»
0 - 0
Threshold of 1 actual
1 0.5 1
w; = w; + Awi

Aw; = A\ * (actual - predicted) * x;
\ Y J
What does this do in this case?

15
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Perceptron learning

-1\
L > —pp predicted
1 —»
0 - 0
Threshold of 1 actual
1 0.5 1
w; = w; + Awi

Aw; = A * (actual - predicted) * x;
& Y }
causes us to increase the weights!
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Perceptron learning

\

> —p predicted
4.' 1
/ Threshold of 1 actual
w; = w; + Awi

Aw; = A\ * (actual - predicted) * x;
\ ;

|
What if predicted = 1 and actual = 0?

17
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Perceptron learning

\

> —pp predicted
4_' 1
/ Threshold of 1 actual
w; = w; + Awi

Aw;, = A * (actual - predicted) * x;
\ )

|

We're over the threshold, so want to decrease weights:

actual - predicted = -1

18
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Perceptron learning

1 1
L > —pp predicted
1 »
0 0
Threshold of 1 actual
1 0.5 1
w; = w, + Awi
Aw; = A * (actual - predicted) * x;

LYJ

What does this do?
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Perceptron learning

1 1
1 ’ —p predicted
1 »
0 0
Threshold of 1 actual
1 1
w; = w; + Awi
Aw; = A * (actual - predicted) * x;

LYJ

Only adjust those weights that
actually contributed!

20
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Perceptron learning

1 1
1 > @ —pp predicted
1 —-
0
Threshold of 1 actual
1 0.5 1
w; = w + Awi

Aw; = LYAJ * (actual - predicted) * x;

What does this do?
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Perceptron learning

1 1

\
L > —pp predicted

1 >
0 - 0
Threshold of 1 actual
1 0.5 1
w; =w, + Awi

Aw; = A * (actual - predicted) * x;

HJ

“learning rate”: value between 0 and 1 (e.g., 0.1)
adjusts how abrupt the changes are to the model

22
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Perceptron learning

1 1

\
L > —pp predicted

1 —p
0 -
Threshold of 1 actual
1 0.5
w; = w; + Awi

Aw; = A * (actual - predicted) * x;

What about the threshold?

23
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Perceptron learning

Input x4 Weight w;

Weight w >

2 .

Input x; > Outputy  11if Ewixi =1
Input x3 . =1

Welght Ws - 1hreshold of ¢
Input x; Weight w, . :

lLifw, +2wixi =0

Weight w, =1

Input x; > Output y

Input x3 /

Weighy'Threshold of 0
1 agrt

W
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Perceptron learning

Input x4 Weight w;

Weight w >

2 .

Input x; > Outputy  11if Ewixi =1
Input x3 _ =1

Welght Ws - 1hreshold of ¢
Input x; Weight w, . :

lLifw, +2wixi =0

Weight w, =1

Input x; > Output y

Weighy'Threshold of 0
1 e.\g\\\\N A

W\ equivalent when w, = -t
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Perceptron learning algorithm

» Initialize weights of the model randomly
» Repeat until you get all examples right:
» For each "training” example (in a random order):
» Calculate current prediction on example

» If wrong:

» wi = wi + A * (actual — predicted) * xi

26
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Perceptron learning

A=0.1

initialize with random weights

Wi
Input X —

Input x, —>

1 Ws/v

X1 X2 X1 and x2
0 0 0
0 1 0
1 0 0
1 1 1
» Outputy
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Perceptron learning

A

0.1

X1 X2 X1 and x2
0 0 0
0 1 0
1 0 0
1 1 1
> Output y

W,;=0.2
Input X; —
W2 =0.5
Input x,
1 /

W3=0.1
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

Right or wrong?




PERCEPTRON LEARNING

Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

W1 =0.2

W2 =0.5

1 W’

Wrong

sum = 0.3: output 1
)y Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

1 _W1=0.2

O W2 =0.5

1 W’

new weights?

sum = 0.3: output 1

)y Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;
decrease (0-1=-1) all non-zero x; by 0.1

1 ~W1=0.2

W, =0.5
0 2 >

1 W

» Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

decrease (0-1=-1) all non-zero x; by 0.1

» Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

1 ~W1=0.1

W2 =0.5
1 >

1 ’W

Right or wrong?

X1 X2 X1 and x2
0 0 0
0 1 0
1 0 0

p Output y
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X1 X2 X1 and x2
Perceptron learning 0 0 0

0 1 0

1 0 0

if wrong:

w; =w; + A * (actual - predicted) * x;

1 ~W1=0.1

W, =0.5
0 2 >

1 ’W

Right. No update!

sum = 0.6: output 1

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

O ~W1=0.1

W2 =0.5
1 >

1 ’W

Right or wrong?

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

W1 =0.1

W2 =0.5

1 ’W

Wrong

sum = 0.5: output 1

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

O ~W1=0.1

W2 =0.5

sum = 0.5: output 1

1 >

1 ’W

new weights?

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

sum = 0.5: output 1

p Output y

1 ’W

decrease (0-1=-1) all non-zero x; by 0.1
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

0 ~W1=0.1

W->-=04
0 2 >

1 ’W

Right or wrong?

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

sum = -0.1: output O

p Output y

1 ’W

Right. No update!
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

O ~W1=0.1

W2 =04
1 >

1 ’W

Right or wrong?

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

W1 =0.1

W2 =04

1 ’W

Wrong

sum = 0.3: output 1

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

sum = 0.3: output 1

p Output y

1 W

decrease (0-1=-1) all non-zero x; by 0.1
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

1 ~W1=0.1

W2 =0.3
1 >

1 ’W

Right. No update!

X1 X2 X1 and X2
0 0 0
0 1 0

sum = 0.2: output 1

p Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

sum = -0.1: output O

p Output y

1 ’W

Right. No update!
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

1 W

Are they all right?

X1 X2 X1 and x2
0 0 0
0 1 0
1 0 0
1 1 1
> Output y
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

W, = 0.1
0 — sum = -0.1: output 0
1 W2 =0.2 ——————— 3 Output y

1 ’m'

decrease (0-1=-1) all non-zero x; by 0.1
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

sum = -0.1: output O
— OQutput y

1 —W,=-03

Are they all right?
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Perceptron learning

A=0.1
if wrong:

w; =w; + A * (actual - predicted) * x;

1 ;W1=0.1

W2 =0.2

X2

T —

1 ’m'

We've learned AND!

p Output y

X1 and X2
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Perceptron learning algorithm

» Afew missing details, but not much more than this.
» Keeps adjusting weights as long as it makes mistakes.

» If the training data is linearly separable, the perceptron
learning algorithm is guaranteed to converge to the
“correct” solution (where it gets all examples right).



TODAY’'S LECTURE IN A NUTSHELL
Lecture 13: Perceptron learning and back propagation

» Perceptron learning

» Back propagation

52



BACK PROPAGATION
Linearly separable

» A data setis linearly separable if you can separate one
example type from the other with a line.

» Which of these are linearly separable?

X1 X2 X1and x X1 X2 X10rX2 X1 X2 X1 XOr X2
0 0 O 0O O 0@ 0O O 0 ©
0 1 0 @ 0 1 1 @ 0 1 1 @
1 0 0O @ 1 0 1 @ 1 0 1 @
1 1 1 @ 1 1 1 @ 1 1 0 @
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Which of these are linearly separable?

54

X1 X2 X1 and x2 X1 X2 X1 0r X2
0 0 0O @ O O 0 @
0 1 0O @ 0 1 1 @
1 0 0O @ 1 0 1 @
1 1 1 @ 1 1 1 @
o o ® o
X1 —@ o X1 —@ o

X1 X2 X1 XOr X2

0O O 0@

0 1 1 @

1 0 1 @

1 1 0 @
® ®

X1 —@ @
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Which of these are linearly separable?

55

X1 X2 Xt1and xo X1 X2 X10rX2

0 0 O 0O O 0@

0 1 0 @ 0 1 1 @

1 0 0O @ 1 0 1 @

1 1 1 @ 1 1 1 @
e © © ©

X1 X2 X1 XOr X2

0O O 0@

0 1 1 @

1 0 1 @

1 1 0 @
O O

X1 —@ @




BACK PROPAGATION

56

XOr

2
Input Xy —p

>_§

Input xo =

T~

-

X1 X2 X1 XOr X2
0 O 0
0 1 1
1 0 1
1 1 0

Output = X Zlor X2
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XOr

Input x4 1_>

-1
-1
1

Input x5

N

E

X1 X2 X1 XOr X2
0 O 0
0 1 1
1 0 1
1 1 0

Output = X Zlor X2
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Learning in multilayer neural networks

» Similar idea as perceptrons.
» Examples are presented to the network.

» If the network computes an output that matches the
desired, nothing is done.

» If there is an error, then the weights are adjusted to
balance the error.

58
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Challenge

» for multilayer networks, we don’t know what the expected
output/error is for the internal nodes

expected output? \/

perceptron multi-layer network




BACK PROPAGATION
Backpropagation

» Say we get it wrong, and we now want to update the
weights

ik
v

We can update this layer just as
if it were a perceptron

60



BACK PROPAGATION
Backpropagation

» Say we get it wrong, and we now want to update the
weights

¥ g g “back-propagate” the error (actual — predicted):

Assume all of these nodes were responsible for
some of the error

How can we figure out how much they were
responsible for?

61



BACK PROPAGATION

62

Backpropagation

» Say we get it wrong, and we now want to update the
weights

error (actual — predicted)

error for node i is: w; error



BACK PROPAGATION
Backpropagation

» Say we get it wrong, and we now want to update the
weights

Update these weights and
continue the process back
through the network

v




BACK PROPAGATION
Backpropagation

» Calculate the error at the output layer.
» Backpropagate the error up the network.
» Update the weights based on these errors.

» Can be shown that this is the appropriate thing to do
based on our assumptions.

» That said, many neuroscientists don’t think the brain does
backpropagation of errors

64
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Neural network regression

» Given enough hidden nodes, you can learn any function
with a neural network.

» Challenges:

» overfitting - learning only the training data and not
learning to generalize.

» picking a network structure.

» can require a lot of tweaking of parameters,
preprocessing, etc.

65
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Summary

» Perceptrons, one-layer networks, are insufficiently
expressive

» Multi-layer networks are sufficiently expressive and can be
trained by error back-propagation

» Many applications including speech, driving, hand-written
character recognition, fraud detection, driving, etc.



BACK PROPAGATION

Our Python NN module

X1 X2 X3
0 0 0
0 1 0
1 0 0
1 1 0
0 0 1
0 1 1
1 0 1
1 1 1

table =\

[ (

(
(
(
(
(
(

0.0, 0.0, 0.0
0.0, 1.0, 0.0]
1.0, 0.0, 0.0
1.0, 1.0, 0.0]
0.0, 0.0, 1.0]
0.0, 1.0, 1.0]
1.0, 0.0, 1.0]

1.0, 1.0, 1.0]

1.0
0.0
1.0
0.0
1.0
1.0
1.0
0.0
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Data format

list of examples

table =\ ~+([0.0,0.0,0.0],[1.0])
[([0.0, 0.0, 0.0], [1.0]),
([0.0, 1.0, 0.0], [0.0]), input list output list
(1.0, 0.0, 0.0], [1.0]), \ Y |
(1.0, 1.0, 0.0], [0.0]), _
(0.0, 0.0, 1.0], [1.0]), example = tuple

([0.0, 1.0, 1.0], [1.0]),
([1.0, 0.0, 1.0], [1.0]),
([1.0, 1.0, 1.0], [0.0]) ]
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Training on data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

/

constructor: constructs a
new NN object

AN

input nodes output nodes

hidden nodes

69
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Training on data

Construct a new network:
>>> nn = NeuralNet(3, 2, 1)

3 input nodes 2 hidden nodes

— 1 output node

S /@

70
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Training on data

>>> nn.train(table)
error 0.195200
error 0.062292
error 0.031077
error 0.019437
error 0.013728
error 0.010437
error 0.008332
error 0.006885
error 0.005837
error 0.005047

by default, trains 1000 iterations and prints out
error values every 100 iterations

71
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After training, can look at weights

>>> nn.train(table)

>>> nn.get_IH_weights()
[[ [w1a, wib, wic],

[w2a, w2b, w2c] ],

[b1, b2]]
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After training, can look at weights

>>> nn.get_HO_weights()
[[ [wi1a, w1b] ],

[b1]]
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Many parameters to play with

def train(data,
learning_rate=0.01,
1terations=1000, print_interval=100)

nn.train(training_data) carries out a training cycle. As specified earlier,
the training data is a list of input-output pairs. There are three optional arguments
to the train function.

learning_rate defaults to 0.01

1terations defaults to 1000. It specifies the number of passes over the training
data

print_interval defaults to 100. The value of the error is displayed after
print_interval passes over the data; we hope to see the value decreasing.
Set the value to 0O if you do not want to see the error values.
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Calling with optional parameters

>>> nn.train(table, iterations = 5,
print_interval = 1)

error 0.005033

error 0.005026

error 0.005019

error 0.005012
error 0.005005
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Optional parameters

» optional_parameters.py

» Check out the constructor (__init__ function) of NeuralNet
for another interesting optional parameter: activation
function!

» It may be worth experimenting with different activation
functions to see what happens to accuracy and run time...


https://cs.pomona.edu/classes/cs51a/examples/Lecture13/optional_parameters.txt

BACK PROPAGATION

Train vs test

TrainData TestData
input || output
0.0 0.00 input || output
0.2 0.04 0.3 0.09
0.4 0.16 0.5 0.25
0.6 0.36 0.7 0.49
0.8 0.64 0.8 0.64
1.0 1.00 0.9 0.81

>>> nn.train(trainData)
>>> nn.test(testData)



ASSIGNED READINGS AND PRACTICE PROBLEMS

78

Resources

» optional_parameters

Homework

» No homework for the week

» Sign up for group presentations


https://cs.pomona.edu/classes/cs51a/examples/Lecture13/optional_parameters.txt

