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TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Perceptron learning and back propagation

▸ Perceptron learning 

▸ Back propagation
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PERCEPTRON LEARNING 3

Artificial Neural Networks - Our approximation



PERCEPTRON LEARNING 4

Strength of signal

▸ w is the strength of signal sent between A and B. 

▸ If A fires and w is positive, then A stimulates B. 

▸ If A fires and w is negative, then A inhibits B.



PERCEPTRON LEARNING 5

Firing a neuron

▸ A given neuron has many, many connecting, input neurons. 

▸ If a neuron is stimulated enough, then it also fires. 

▸ How much stimulation is required is determined by its threshold.
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A single neuron/perceptron
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Training neural networks

▸ start with some initial 
weights and thresholds 

▸ show examples repeatedly 
to NN 

▸ update weights/thresholds 
by comparing NN output 
to actual output 
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PERCEPTRON LEARNING

Perceptron learning algorithm

▸ Repeat until you get all examples right: 

▸ For each “training” example: 

▸ Calculate current prediction on example 

▸ If wrong: 

▸ Update weights and threshold towards getting this 
example correct.
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PERCEPTRON LEARNING

Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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PERCEPTRON LEARNING

Perceptron learning
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PERCEPTRON LEARNING

Perceptron update rule

▸ If wrong: 

▸ Update weights and threshold towards getting this 
example correct 

▸  

▸

wi = wi + Δwi

Δwi = λ * (actual − predicted) * xi
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning

22



PERCEPTRON LEARNING

Perceptron learning
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Perceptron learning
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PERCEPTRON LEARNING

Perceptron learning
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PERCEPTRON LEARNING

Perceptron learning algorithm

▸ Initialize weights of the model randomly 

▸ Repeat until you get all examples right: 

▸ For each “training” example (in a random order): 

▸ Calculate current prediction on example 

▸ If wrong: 

▸ wi = wi + λ * (actual − predicted) * xi
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PERCEPTRON LEARNING

Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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Perceptron learning
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PERCEPTRON LEARNING

Perceptron learning algorithm

▸ A few missing details, but not much more than this. 

▸ Keeps adjusting weights as long as it makes mistakes. 

▸ If the training data is linearly separable, the perceptron 
learning algorithm is guaranteed to converge to the 
“correct” solution (where it gets all examples right).
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TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Perceptron learning and back propagation

▸ Perceptron learning 

▸ Back propagation
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BACK PROPAGATION

Linearly separable

▸ A data set is linearly separable if you can separate one 
example type from the other with a line. 

▸ Which of these are linearly separable?
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BACK PROPAGATION

Which of these are linearly separable?
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BACK PROPAGATION

Which of these are linearly separable?
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BACK PROPAGATION

xor
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BACK PROPAGATION

xor
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BACK PROPAGATION

Learning in multilayer neural networks

▸ Similar idea as perceptrons. 

▸ Examples are presented to the network. 

▸ If the network computes an output that matches the 
desired, nothing is done. 

▸ If there is an error, then the weights are adjusted to 
balance the error.
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▸ for multilayer networks, we don’t know what the expected 
output/error is for the internal nodes

BACK PROPAGATION

Challenge
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BACK PROPAGATION

Backpropagation

▸ Say we get it wrong, and we now want to update the 
weights
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Backpropagation

▸ Say we get it wrong, and we now want to update the 
weights
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Backpropagation

▸ Say we get it wrong, and we now want to update the 
weights
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Backpropagation

▸ Say we get it wrong, and we now want to update the 
weights
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BACK PROPAGATION

Backpropagation

▸ Calculate the error at the output layer. 

▸ Backpropagate the error up the network. 

▸ Update the weights based on these errors. 

▸ Can be shown that this is the appropriate thing to do 
based on our assumptions. 

▸ That said, many neuroscientists don’t think the brain does 
backpropagation of errors
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BACK PROPAGATION

Neural network regression

▸ Given enough hidden nodes, you can learn any function 
with a neural network. 

▸ Challenges: 

▸ overfitting – learning only the training data and not 
learning to generalize. 

▸ picking a network structure. 

▸ can require a lot of tweaking of parameters, 
preprocessing, etc.
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BACK PROPAGATION

Summary

▸ Perceptrons, one-layer networks, are insufficiently 
expressive 

▸ Multi-layer networks are sufficiently expressive and can be 
trained by error back-propagation 

▸ Many applications including speech, driving, hand-written 
character recognition, fraud detection, driving, etc.
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BACK PROPAGATION

Our Python NN module
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BACK PROPAGATION

Data format
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BACK PROPAGATION

Training on data
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Training on data
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BACK PROPAGATION

Training on data
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BACK PROPAGATION

After training, can look at weights
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BACK PROPAGATION

After training, can look at weights
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BACK PROPAGATION

Many parameters to play with
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BACK PROPAGATION

Calling with optional parameters
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BACK PROPAGATION

Optional parameters

▸ optional_parameters.py   

▸ Check out the constructor (__init__ function) of NeuralNet 
for another interesting optional parameter: activation 
function! 

▸ It may be worth experimenting with different activation 
functions to see what happens to accuracy and run time...
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https://cs.pomona.edu/classes/cs51a/examples/Lecture13/optional_parameters.txt


BACK PROPAGATION

Train vs test
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

78

Homework
▸ No homework for the week 

▸ Sign up for group presentations

▸ optional_parameters

https://cs.pomona.edu/classes/cs51a/examples/Lecture13/optional_parameters.txt

