
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

10: Dictionaries

Alexandra Papoutsaki

she/her/hers

Lectures

02-20-2023

Zilong Ye

he/him/his

Labs

TODAY’S LECTURE IN A NUTSHELL

Lecture 10: Dictionaries and recursion

▸ Administrative

▸ Dictionaries

2

ADMINISTRATIVE

Midterm 1

3

▸ Monday 02/27 in class.

▸ Exam will be paper-based.

▸ It will cover everything through dictionaries, but not recursion.

▸ You can bring in two pages of notes (either two pieces of paper, single-
side or one piece, double-sided).

▸ It will include problems like practice problems on the course website:

▸ Some will ask you to write code, others will provide you with
functions and ask you to figure out what functions do, or why they
don’t work, whether certain syntax is valid, and what would the
output be, …

ADMINISTRATIVE

Midterm 1 - How to study

4

▸ Go over the slides/notes slowly and deliberately.

▸ Practice writing code on paper. Once you are done, consider that as your
submission and transfer your code to PyCharm. Is it syntactically correct?
Test it with various inputs. Does it do what you thought it would?

▸ Do the practice problems/exam WITHOUT looking at the solutions.

▸ Open all the provided python files; look at the docstrings of the functions
and make yourself implement them before you compare your response
with the provided code.

▸ Review the assignments and feedback.

▸ Come to class/lab/office hours/mentor sessions prepared to ask questions.

ADMINISTRATIVE

Midterm 1 - Lecture 1

5

▸ Built-in math calculations and order of precedence of
operators

▸ int and float numeric types

▸ Variables, assignment statements

▸ Integer division

▸ Comments

ADMINISTRATIVE

Midterm 1 - Lecture 2

6

▸ Syntax for defining functions

▸ How to call functions

▸ Parameters vs arguments

▸ How to store what a function returns

▸ Strings and how to concatenate them

▸ int(), float(), and str() functions

ADMINISTRATIVE

Midterm 1 - Lecture 3

7

▸ print vs return

▸ How to write multiline comments and docstrings

▸ How to import a module using
from module_name import * so that you can use its
functions

▸ Review turtle module functions

▸ for i in range(number) loops to execute a block of
times number times, starting from 0 going to number-1

ADMINISTRATIVE

Midterm 1 - Lecture 4

8

▸ random module and its functions

▸ Importing only one function
from module_name import function

▸ bools, T/F questions we can ask, and truth tables

▸ if, if else, if elif elif… else statements

▸ Order matters! Satisfying one means you don’t check the rest!

▸ input function

▸ Gives you a string, you need to convert it to other types

ADMINISTRATIVE

Midterm 1 - Lecture 5

9

▸ while loops

▸ for loops being equivalent to while loops

ADMINISTRATIVE

Midterm 1 - Lecture 6

10

▸ How to define a list and how to reference it

▸ How to index a list (start at 0 to len(list)-1)

▸ Negative starting at -1 goes backwards

▸ You can have lists of mixed types or even lists of lists

▸ Slicing [a:b], from a to b-1. Variations of slicing

▸ [:] deep copy of a list

▸ For each loops

▸ list methods (lists are mutable, most methods do not return anything but alter the list)

▸ append, pop (two versions), insert, sort

▸ Sequences and their shared properties

▸ Strings as sequences (strings are immutable!)

▸ Tuples as sequences (tuples are immutable!)

▸ How to unpack a tuple (see three variations of print_movies in movies.py)

ADMINISTRATIVE

Midterm 1 - Lecture 7

11

▸ Be able to trace what happens when a function is called
(and potentially calls another function) to its local vs
global variables and parameters/arguments

▸ in keyword for sequences

▸ Number-game file contains good examples of how to
structure while loops to ask user input

▸ Sequence operators (+, *)

▸ Aliasing and how lists can be affected

ADMINISTRATIVE

Midterm 1 - Lecture 8

12

▸ Scope (who can see what)

▸ String methods (strings are immutable, the methods
return something but do not alter the original string)

▸ lower, replace, find

▸ for (index, value) in enumerate(sequence)

ADMINISTRATIVE

Midterm 1 - Lecture 9

13

▸ How to open (and close!) a file to read it

▸ How to read line by line

▸ String methods split, trim, upper, and isupper

ADMINISTRATIVE

Midterm 1 - Lecture 10

14

▸ How to create a dictionary, add a key-value pair,
update an existing key value pair, access a value given
a key.

▸ Dictionary methods:

▸ pop, clear, keys, values, items

▸ How to iterate through dictionaries (both simple for
loop and (key, value) pair for all items)

ADMINISTRATIVE

Assignment 5

15

▸ You can work with a partner again, but it has to be a
different partner from assignment 4.

▸ We ask you to provide us with anonymous feedback
so that we can improve together this course.

▸ Link to form in assignment 5.

TODAY’S LECTURE IN A NUTSHELL

Lecture 10: Dictionaries and recursion

▸ Administrative

▸ Dictionaries

16

DICTIONARIES

Dictionaries (or maps, symbol tables, associative arrays, …)

17

▸ Data structure that stores pairs of keys and associated values. Each key is unique and is associated with a value.

▸ A key can be any immutable type. The value can be any Python data object.

▸ Lookup (finding a key and returning its associated value) is being done based on the key.

▸ Super common in the real world. Any ideas?

▸ Actual dictionaries

▸ Key = English word

▸ Value = definition

▸ Social security number directory

▸ Key = social security number

▸ Value = name, address, etc.

▸ Phone contacts

▸ Key = name

▸ Value = phone number

▸ Websites

▸ Key = URL (e.g., https://cs.pomona.edu/classes/cs51a)

▸ Value = location of the computer that hosts this website

https://cs.pomona.edu/classes/cs51a

DICTIONARIES

Creating dictionaries

18

▸ Dictionaries can be created using curly braces:

▸ Dictionaries function similarly to lists, except we can put things in ANY index and can
use non-numerical indices. Notice when a dictionary is printed out, we get the key AND
the associated value:

DICTIONARIES

Keys can be any immutable object

19

DICTIONARIES

Values can be any object

20

DICTIONARIES

Be careful to put the key in the dictionary before trying to use it

21

DICTIONARIES

Creating and populating dictionaries in one step

22

DICTIONARIES

Questions you might want to ask a dictionary

23

▸ Does it have a particular key?

▸ How many key/value pairs are in the
dictionary?

▸ What are all of the values in the
dictionary?

▸ What are all of the keys in the dictionary?

▸ Remove all of the items in the dictionary?

DICTIONARIES

More facts about dictionaries

24

▸ Dictionaries support many operations we have seen with sequences, such as the
keyword in and the function len.

▸ Dictionaries are a class of objects, just like everything else we've seen (called dict ...
short for dictionary)

DICTIONARIES

Practice time

25

▸ Let’s write a function called get_counts that takes a list of numbers and returns a
dictionary containing the counts of each of the numbers.

▸ Key idea. It is so common to iterate over the keys in a dictionary that you can omit the
keys method call in the for loop — iterating over a dictionary implicitly iterates over its
keys.

Save & Run

▸

DICTIONARIES

Practice time (cont’)

26

▸ There are two cases we need to contend with:

1. If the number num isn't in the dictionary:

‣ It’s our first time seeing it, so d[num] = 1

2. If the number num is in the dictionary:

▸ We need to increment the existing counter by 1:

▸ d[num] = d[num] + 1

▸ or we could also write:

▸ d[num] += 1

DICTIONARIES

dictionaries.py

27

▸ Look at the get_counts function which applies this key idea.

DICTIONARIES

Iterating over dictionaries

28

▸ We're almost to the point where we can find the most frequent value.

▸ Next, we need to go through all of the values in the dictionary to find the most frequent one.

▸ There are many ways we could iterate over the things in a dictionary:

▸ iterate over the values, or

▸ iterate over the keys, or

▸ iterate over the key/value pairs

▸ Which one is most common?

▸ since lookups are done based on the keys, iterating over the keys is the most common

for key in dictionary:

value = dictionary[key]

▸ key will get associated with each key in the dictionary.

DICTIONARIES

dictionaries.py

29

▸ Look at the print_counts function.

▸ \t is the tab character

▸ Notice that the keys are not in numerical order. In general, there's no guarantee
about the ordering of the keys, only that you'll iterate over all of them.

DICTIONARIES

dictionaries.py

30

▸ Look at the get_most_frequent function.

▸ It might also be useful to not only get the most frequent value, but also how frequent
it is.

▸ Anytime you want to return more than one value from a function, a tuple is often a
good option.

▸ We now return a tuple and also include the max_value in addition to max_key.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 12

▸ numbers.txt

▸ dictionaries.py

31

Homework
▸ Assignment 5

Practice Problems
▸ Practice 6 (solutions)

https://runestone.academy/ns/books/published/thinkcspy/Dictionaries/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture10/numbers.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture10/dictionaries.txt
https://cs.pomona.edu/classes/cs51a/problems/practice6.txt
https://cs.pomona.edu/classes/cs51a/problems/practice6-solution.txt

