
CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

10: Dictionaries

Alexandra Papoutsaki

she/her/hers

Lectures

02-20-2023

Zilong Ye

he/him/his

Labs

Welcome to lecture 10, where we will examine dictionaries, a new data structure, that will allow us to store pairs of keys and values.

TODAY’S LECTURE IN A NUTSHELL

Lecture 10: Dictionaries and recursion

▸ Administrative

▸ Dictionaries

2

Before we start talking about dictionaries, I wanted to go over some announcements.

ADMINISTRATIVE

Midterm 1

3

▸ Monday 02/27 in class.

▸ Exam will be paper-based.

▸ It will cover everything through dictionaries, but not recursion.

▸ You can bring in two pages of notes (either two pieces of paper, single-
side or one piece, double-sided).

▸ It will include problems like practice problems on the course website:

▸ Some will ask you to write code, others will provide you with
functions and ask you to figure out what functions do, or why they
don’t work, whether certain syntax is valid, and what would the
output be, …

Our first midterm is coming up next week and as we have already discussed it will be paper-based. In terms of material it will cover, everything up to today’s lecture,
excluding recursion, is fair game. You can bring in two pages of notes with you. The exam will include problems like practice problems on the course website, such as
asking you to write code, figure out what functions do, if code is syntactically valid, etc.

ADMINISTRATIVE

Midterm 1 - How to study

4

▸ Go over the slides/notes slowly and deliberately.

▸ Practice writing code on paper. Once you are done, consider that as your
submission and transfer your code to PyCharm. Is it syntactically correct?
Test it with various inputs. Does it do what you thought it would?

▸ Do the practice problems/exam WITHOUT looking at the solutions.

▸ Open all the provided python files; look at the docstrings of the functions
and make yourself implement them before you compare your response
with the provided code.

▸ Review the assignments and feedback.

▸ Come to class/lab/office hours/mentor sessions prepared to ask questions.

How do you study to do well? You should start by reviewing the slides/notes slowly and deliberately. To gain comfort with practicing writing code on paper, you need to
treat this as the exam. Only once you are done, then consider that as your submission, transfer your code to PyCharm and see if it is syntactically correct and if it
produces the results you thought. We also provide you with a lot of practice problems. Make sure you review these and answer them thoroughly before you look at the
solutions. At the end of each presentation (or top of Dr. Dave’s notes), you will find links to the python files we have used during the lecture. Look at the function definition
and its doctstring. Can you reproduce it? Try it! Then compare your response with the code we provide you. You can also take a look at the assignments and the
feedback that Prof Ye and the TAs have provided. And as always, come to us with questions :)

ADMINISTRATIVE

Midterm 1 - Lecture 1

5

▸ Built-in math calculations and order of precedence of
operators

▸ int and float numeric types

▸ Variables, assignment statements

▸ Integer division

▸ Comments

ADMINISTRATIVE

Midterm 1 - Lecture 2

6

▸ Syntax for defining functions

▸ How to call functions

▸ Parameters vs arguments

▸ How to store what a function returns

▸ Strings and how to concatenate them

▸ int(), float(), and str() functions

ADMINISTRATIVE

Midterm 1 - Lecture 3

7

▸ print vs return

▸ How to write multiline comments and docstrings

▸ How to import a module using  
from module_name import * so that you can use its
functions

▸ Review turtle module functions

▸ for i in range(number) loops to execute a block of
times number times, starting from 0 going to number-1

ADMINISTRATIVE

Midterm 1 - Lecture 4

8

▸ random module and its functions

▸ Importing only one function  
from module_name import function

▸ bools, T/F questions we can ask, and truth tables

▸ if, if else, if elif elif… else statements

▸ Order matters! Satisfying one means you don’t check the rest!

▸ input function

▸ Gives you a string, you need to convert it to other types

ADMINISTRATIVE

Midterm 1 - Lecture 5

9

▸ while loops

▸ for loops being equivalent to while loops

ADMINISTRATIVE

Midterm 1 - Lecture 6

10

▸ How to define a list and how to reference it

▸ How to index a list (start at 0 to len(list)-1)

▸ Negative starting at -1 goes backwards

▸ You can have lists of mixed types or even lists of lists

▸ Slicing [a:b], from a to b-1. Variations of slicing

▸ [:] deep copy of a list

▸ For each loops

▸ list methods (lists are mutable, most methods do not return anything but alter the list)

▸ append, pop (two versions), insert, sort

▸ Sequences and their shared properties

▸ Strings as sequences (strings are immutable!)

▸ Tuples as sequences (tuples are immutable!)

▸ How to unpack a tuple (see three variations of print_movies in movies.py)

ADMINISTRATIVE

Midterm 1 - Lecture 7

11

▸ Be able to trace what happens when a function is called
(and potentially calls another function) to its local vs
global variables and parameters/arguments

▸ in keyword for sequences

▸ Number-game file contains good examples of how to
structure while loops to ask user input

▸ Sequence operators (+, *)

▸ Aliasing and how lists can be affected

ADMINISTRATIVE

Midterm 1 - Lecture 8

12

▸ Scope (who can see what)

▸ String methods (strings are immutable, the methods
return something but do not alter the original string)

▸ lower, replace, find

▸ for (index, value) in enumerate(sequence)

ADMINISTRATIVE

Midterm 1 - Lecture 9

13

▸ How to open (and close!) a file to read it

▸ How to read line by line

▸ String methods split, trim, upper, and isupper

ADMINISTRATIVE

Midterm 1 - Lecture 10

14

▸ How to create a dictionary, add a key-value pair,
update an existing key value pair, access a value given
a key.

▸ Dictionary methods:

▸ pop, clear, keys, values, items

▸ How to iterate through dictionaries (both simple for
loop and (key, value) pair for all items)

ADMINISTRATIVE

Assignment 5

15

▸ You can work with a partner again, but it has to be a
different partner from assignment 4.

▸ We ask you to provide us with anonymous feedback
so that we can improve together this course.

▸ Link to form in assignment 5.

We also released assignment 5 which can again be completed collaboratively but not with the same partner with assignment 4. We also ask you to provide us with
anonymous feedback so we can improve together this course.

TODAY’S LECTURE IN A NUTSHELL

Lecture 10: Dictionaries and recursion

▸ Administrative

▸ Dictionaries

16

OK, it’s time for Python!

DICTIONARIES

Dictionaries (or maps, symbol tables, associative arrays, …)

17

▸ Data structure that stores pairs of keys and associated values. Each key is unique and is associated with a value.

▸ A key can be any immutable type. The value can be any Python data object.

▸ Lookup (finding a key and returning its associated value) is being done based on the key.

▸ Super common in the real world. Any ideas?

▸ Actual dictionaries

▸ Key = English word

▸ Value = definition

▸ Social security number directory

▸ Key = social security number

▸ Value = name, address, etc.

▸ Phone contacts

▸ Key = name

▸ Value = phone number

▸ Websites

▸ Key = URL (e.g., https://cs.pomona.edu/classes/cs51a)

▸ Value = location of the computer that hosts this website

Today we will start with dictionaries, a data structure that stores pairs of keys and associated values. All of the compound data types we have studied in detail so far —
strings, lists, and tuples — are sequential collections. This means that the items in the collection are ordered from left to right and they use integers as indices to access
the values they contain. Each key in our dictionary is unique and is associated with a single value. A key can be any immutable type. The value can be any Python data
object.

 If we were to look up information, we would provide a key and we would get back its associated value. Dictionaries (other aliases in CS include maps, symbol tables,
and associate arrays) are super common in real world. Well, you already know about real dictionaries that associate words with definitions. Others could be the social
security number directory, your phone contacts, or even websites. In each of these cases, there is a unique key associated with a value.

https://cs.pomona.edu/classes/cs51a

DICTIONARIES

Creating dictionaries

18

▸ Dictionaries can be created using curly braces:

▸ Dictionaries function similarly to lists, except we can put things in ANY index and can
use non-numerical indices. Notice when a dictionary is printed out, we get the key AND
the associated value: 
 
 
 
 

In Python, you can create a dictionary using the curly braces. Dictionaries function similarly to lists, except we can put things in ANY index and can use non-numerical
indices. Notice when a dictionary is printed out, we get the key AND the associated value.

DICTIONARIES

Keys can be any immutable object

19

Keys can be anything as long as that anything is an immutable object (that is int, float, str, tuple, but not… list)

DICTIONARIES

Values can be any object

20

Values on the other hand can be any time of object, including a list!

DICTIONARIES

Be careful to put the key in the dictionary before trying to use it

21

If you ask to use a value that is associated with a key that doesn’t exist you will get an error.

DICTIONARIES

Creating and populating dictionaries in one step

22

There is also a single line of code you can use to create and populate a dictionary in one step.

DICTIONARIES

Questions you might want to ask a dictionary

23

▸ Does it have a particular key?

▸ How many key/value pairs are in the
dictionary?

▸ What are all of the values in the
dictionary?

▸ What are all of the keys in the dictionary?

▸ Remove all of the items in the dictionary?

When you have a dictionary, you might want to ask questions such as whether it has a particular key, how many key/value pairs it contains, what are its keys, what are its
values, and you might want to apply actions such as removing all its items.

DICTIONARIES

More facts about dictionaries

24

▸ Dictionaries support many operations we have seen with sequences, such as the
keyword in and the function len.

▸ Dictionaries are a class of objects, just like everything else we've seen (called dict ...
short for dictionary)

Similarly to sequences, dictionaries support the in keyword and the function len. The name of the type of a dictionary is dict.

DICTIONARIES

Practice time

25

▸ Let’s write a function called get_counts that takes a list of numbers and returns a
dictionary containing the counts of each of the numbers.

▸ Key idea. It is so common to iterate over the keys in a dictionary that you can omit the
keys method call in the for loop — iterating over a dictionary implicitly iterates over its
keys.

Save & Run

▸

Let’s practice together by writing a a function called get_counts that takes a list of numbers and returns a dictionary containing the counts of each of the numbers.

DICTIONARIES

Practice time (cont’)

26

▸ There are two cases we need to contend with:

1. If the number num isn't in the dictionary:

‣ It’s our first time seeing it, so d[num] = 1

2. If the number num is in the dictionary:

▸ We need to increment the existing counter by 1:

▸ d[num] = d[num] + 1

▸ or we could also write:

▸ d[num] += 1

There are two cases we need to consider: 1) what happens if we haven’t encountered a number before (that is this is the first time we see it), and what happens if we
have seen it before (we need to increase its counter by 1).

DICTIONARIES

dictionaries.py

27

▸ Look at the get_counts function which applies this key idea.

dictionaries.py contains a get_counts function that applies this key idea.

DICTIONARIES

Iterating over dictionaries

28

▸ We're almost to the point where we can find the most frequent value.

▸ Next, we need to go through all of the values in the dictionary to find the most frequent one.

▸ There are many ways we could iterate over the things in a dictionary:

▸ iterate over the values, or

▸ iterate over the keys, or

▸ iterate over the key/value pairs

▸ Which one is most common?

▸ since lookups are done based on the keys, iterating over the keys is the most common

for key in dictionary:

value = dictionary[key]

▸ key will get associated with each key in the dictionary.

We’re almost to the point where we can find the most frequent value. We could iterate through the dictionary over its values, keys, or key/value pairs. Iterating through its
keys is the most common approach, so we will go through each key, to get its associated value, and find the most frequent one.

DICTIONARIES

dictionaries.py

29

▸ Look at the print_counts function.

▸ \t is the tab character

▸ Notice that the keys are not in numerical order. In general, there's no guarantee
about the ordering of the keys, only that you'll iterate over all of them.

Let’s look now at print_counts. Notice that the keys are not in numerical order. In general, there's no guarantee about the ordering of the keys, only that you'll iterate over
all of them.

DICTIONARIES

dictionaries.py

30

▸ Look at the get_most_frequent function.

▸ It might also be useful to not only get the most frequent value, but also how frequent
it is.

▸ Anytime you want to return more than one value from a function, a tuple is often a
good option.

▸ We now return a tuple and also include the max_value in addition to max_key.

get_most_frequent will return a tuple of the key with the max value.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Resources

▸ Textbook: Chapter 12

▸ numbers.txt

▸ dictionaries.py

31

Homework
▸ Assignment 5

Practice Problems
▸ Practice 6 (solutions)

https://runestone.academy/ns/books/published/thinkcspy/Dictionaries/toctree.html
https://cs.pomona.edu/classes/cs51a/examples/Lecture10/numbers.txt
https://cs.pomona.edu/classes/cs51a/examples/Lecture10/dictionaries.txt
https://cs.pomona.edu/classes/cs51a/problems/practice6.txt
https://cs.pomona.edu/classes/cs51a/problems/practice6-solution.txt

