
CS051A
INTRO TO COMPUTER SCIENCE WITH TOPICS IN AI

Final Exam Study Guide

Alexandra Papoutsaki

she/her/hers

Lectures

05-03–2023

Zilong Ye

he/him/his

Labs

▸ You can bring in four pages of notes (either four pieces of paper, single-side or two
pieces, double-sided).

▸ Go over the slides/notes slowly and deliberately.

▸ Practice writing code on paper. Once you are done, consider that as your submission
and transfer your code to PyCharm. Is it syntactically correct? Test it with various inputs.
Does it do what you thought it would?

▸ Do the practice problems/exam WITHOUT looking at the solutions.

▸ Open all the provided python files; look at the docstrings of the functions and make
yourself implement them before you compare your response with the provided code.

▸ Review the assignments and feedback.

▸ Office Hours: Monday May 8th 11am-noon, 1-4pm.

How to study

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE

Lecture 1

3

▸ Built-in math calculations and order of precedence of
operators

▸ int and float numeric types

▸ Variables, assignment statements

▸ Integer division

▸ Comments

FINAL EXAM STUDY GUIDE

 Lecture 2

4

▸ Syntax for defining functions

▸ How to call functions

▸ Parameters vs arguments

▸ How to store what a function returns

▸ Strings and how to concatenate them

▸ int(), float(), and str() functions

FINAL EXAM STUDY GUIDE

 Lecture 3

5

▸ print vs return

▸ How to write multiline comments and docstrings

▸ How to import a module using
from module_name import * so that you can use its
functions

▸ Review turtle module functions

▸ for i in range(number) loops to execute a block of
times number times, starting from 0 going to number-1

FINAL EXAM STUDY GUIDE

 Lecture 4

6

▸ random module and its functions

▸ Importing only one function
from module_name import function

▸ bools, T/F questions we can ask, and truth tables

▸ if, if else, if elif elif… else statements

▸ Order matters! Satisfying one means you don’t check the rest!

▸ input function

▸ Gives you a string, you need to convert it to other types

FINAL EXAM STUDY GUIDE

 Lecture 5

7

▸ while loops

▸ for loops being equivalent to while loops

FINAL EXAM STUDY GUIDE

 Lecture 6

8

▸ How to define a list and how to reference it

▸ How to index a list (start at 0 to len(list)-1)

▸ Negative starting at -1 goes backwards

▸ You can have lists of mixed types or even lists of lists

▸ Slicing [a:b], from a to b-1. Variations of slicing

▸ [:] deep copy of a list

▸ For each loops

▸ list methods (lists are mutable, most methods do not return anything but alter the list)

▸ append, pop (two versions), insert, sort

▸ Difference between append and + operator

▸ * operator for sequences

▸ Sequences and their shared properties

▸ Strings as sequences (strings are immutable!)

▸ Tuples as sequences (tuples are immutable!)

▸ How to unpack a tuple (see three variations of print_movies in movies.py)

FINAL EXAM STUDY GUIDE

 Lecture 7

9

▸ Be able to trace what happens when a function is called
(and potentially calls another function) to its local vs global
variables and parameters/arguments

▸ in keyword for sequences

▸ Number-game file contains good examples of how to
structure while loops to ask user input

▸ Sequence operators (+, *)

▸ Aliasing and how lists can be affected

FINAL EXAM STUDY GUIDE

 Lecture 8

10

▸ Scope (who can see what)

▸ String methods (strings are immutable, the methods return
something but do not alter the original string)

▸ lower, replace, find

▸ for (index, value) in enumerate(sequence)

FINAL EXAM STUDY GUIDE

 Lecture 9

11

▸ How to open (and close!) a file to read it

▸ How to read line by line

▸ String methods split, trim, upper, and isupper

FINAL EXAM STUDY GUIDE

 Lecture 10

12

▸ How to create a dictionary, add a key-value pair, update an
existing key value pair, access a value given a key.

▸ Dictionary methods:

▸ pop, clear, keys, values, items

▸ How to iterate through dictionaries (both simple for loop
and (key, value) pair for all items)

▸ Look at recursive functions we saw together and practice writing recursive functions using our
usual recipe:

▸ 1. Define what the function the name and parameters of the function

▸ 2. Define the recursive case

▸ Pretend you had a working version of your function, but it only works on smaller
versions of your current problem.

▸ The recursive problem should be getting "smaller", by some definition of smaller.

▸ E.g., for smaller numbers (like in factorial), lists that are smaller/shorter, strings
that are shorter

▸ 3. Define the base case ‣ What is the smallest (or simplest) problem? This is often the base
case

▸ 4. Put it all together

Lecture 11

FINAL EXAM STUDY GUIDE

▸ The idea that a single neuron/perceptron has connecting inputs,
each contributing

▸ The sum will be compared against a threshold

function.

▸ If greater than or equal to threshold, the output is 1.

▸ If less than than threshold, the output is 0.

▸ Go over practice example in slide 33-38.

x1, x2, . . . xi * wi

∑
i

xi * wi

Lecture 12

FINAL EXAM STUDY GUIDE

▸ Perceptron learning algorithm

▸ Assume we want to train a neuron with n inputs, .

▸ Start with adding an extra input neuron whose input will always be 1.

▸ Set threshold at 0.

▸ Repeat until you get all examples right:

▸ For each “training” example:

▸ Calculate current prediction on example

▸ If wrong:

▸ Update weights and threshold towards getting this example correct.

▸

▸ , where is the learning rate.

▸ See practice example in slides 27–50.

▸ The perceptron learning algorithm will work if the training data is linearly separable (you can
separate your data with a straight line). Counter-example: XOR

x1, x2, …, xn

xn+1

wi = wi + Δwi

Δwi = λ * (actual − predicted) * xi λ

Lecture 13

FINAL EXAM STUDY GUIDE

▸ Given a training dataset with two labels (e.g., positive and
negative reviews), know how to apply Naïve Bayes to classify a
new data point (here, a review).

▸ Start by calculating the conditional probabilities for each
feature (here, a word) given a label.

▸ Calculate the probability of the new data point given a label
and pick the highest as the most likely label.

▸ See example from slide 74 to 91.

Lecture 14

FINAL EXAM STUDY GUIDE

▸ An object is a software bundle of state (data/variables) and behavior (methods)

▸ A class is a blueprint for what data and methods objects should have

▸ You need to create an object, that is an instance of a class, using a constructor
(through the magic method __init__)

▸ object_name = ClassName(potential_parameters)

▸ __str__ returns (doesn’t print!) the string representation of the state of an object.

▸ self is a reference to the current object.

▸ We also use self.variable and method() to access an object’s instance
variables and methods within the class. object.variable and
object.method() outside the class.

▸ self should be the first parameter in all methods

Lecture 15

FINAL EXAM STUDY GUIDE

▸ Optional parameters and how to use them.

▸ Look at the code and be familiar with how queues (FIFO) and
stacks (LIFO) work and their methods

▸ Identity vs equality

▸ id function and is keyword vs __eq__ method and ==
operator.

▸ Look at the fruit.py as an example of how to practice writing
classes and creating and using objects.

Lecture 16

FINAL EXAM STUDY GUIDE

▸ add the start state to to_visit

▸ Repeat

▸ take a state off the to_visit list

▸ if it’s the goal state

▸ we’re done!

▸ if it’s not the goal state

▸ Add all of the next possible states to the to_visit list

▸ Depth first search (DFS): to_visit is a stack

▸ Breadth first search (BFS): to_visit is a queue

▸ Know how to apply DFS and BFS on a graph

Lecture 17

FINAL EXAM STUDY GUIDE

▸ Look into implementation of BFS

▸ Look into implementation of DFS

▸ Iterative variant using a stack

▸ Recursive variant returning A solution

▸ Recursive variant returning ALL solutions

▸ Syntax for creating, accessing, and manipulating matrices (see files in last slide).

▸ Be careful with aliasing issues

▸ Practice with visualization tool https://pythontutor.com/
visualize.html#mode=edit

▸

Lecture 18

FINAL EXAM STUDY GUIDE

https://pythontutor.com/visualize.html#mode=edit
https://pythontutor.com/visualize.html#mode=edit

▸ Trick to avoid repeats in DFS

▸ DFS and BFS are uninformed search algorithms

▸ We can use heuristics to bias our search towards the solution.

▸ Best first search is an example of informed search algorithms where
the to_visit list is sorted based on some evaluation function and the
most desirable state (rather than the first- or last-added like in BFS
and DFS, respectively) is picked.

▸ Best first search for sudoku example demonstrate their difference.

▸ Coming up with good heuristics is hard and can be computationally
expensive.

Lecture 21

FINAL EXAM STUDY GUIDE

▸ Know the gist of minimax algorithm.

▸ Know how to apply it similar to slide 33-48.

Lecture 21

FINAL EXAM STUDY GUIDE

▸ Function urlopen from module urllib.request allows us to
read webpages line by line.

▸ We need to call decode to convert them from type byte to
str.

▸ string.find(substr, begin = 0, end =
len(string))returns the starting index in string that
substr can be found in string[begin:end] or -1 if not
found.

Lecture 22

FINAL EXAM STUDY GUIDE

▸ Exceptions are raised when certain types of error (such as
passing empty lists, files not found, empty files, division with
zero) occur.

▸ Be familiar with the raise and try except keywords and the
flow of information if we don’t catch them (prints error and
terminates program) vs catch them (jumps to except block and
then continues execution of the rest of the code)

Lecture 23 - Exceptions

FINAL EXAM STUDY GUIDE

▸ Sets are unordered collections of unique items

▸ Be familiar with how to construct sets ({} and set constructor), e.g., :

▸ my_set = {1, 2, 3, 4}

▸ my_set = set([1, 2, 3, 4])

▸ set constructor can take any iterable object

▸ Basic set methods: add, clear remove, pop, difference, intersection, union

▸ Are they accessors or mutators?

▸ Choose sets over lists when you don’t care about ordering, duplicates.

▸ Sets are faster when it comes to questions of membership (keyword in)

▸ About O(1) vs O(n) for lists

▸ Although are both O(n) for iteration, lists are slightly faster than sets.

Lecture 23 - Sets

FINAL EXAM STUDY GUIDE

▸ Exceptions are raised when certain types of error (such as
passing empty lists, files not found, empty files, division with
zero) occur.

▸ Be familiar with the raise and try except keywords and the
flow of information if we don’t catch them (prints error and
terminates program) vs catch them (jumps to except block and
then continues execution of the rest of the code)

Lecture 23

FINAL EXAM STUDY GUIDE

▸ Functions are objects (class function)

▸ A higher order function is a function that takes a function as a parameter, or returns a
function.

▸ Lambda functions are anonymous functions that can take multiple parameters and
have one expression.

▸ lambda <inputs> : <expression>

▸ The inputs are passed and the expression is evaluated and returned.

▸ map function takes a function f and an iterable object iter as parameters and
returns a map object of the results after applying f to each item of iter.

▸ filter function takes a function f that returns bool and an iterable object iter as
parameters and returns a filter object of all items of iter for which freturned
True.

Lecture 24

FINAL EXAM STUDY GUIDE

▸ Asymptotic analysis uses mathematical tools to find how algorithms scale as the problem input size grows.

▸ Big O provides an upper bound on the growth rate of the runtime (or memory) of an algorithm

▸ Common time complexities:

▸ = constant

▸ Doubling the input size, won’t affect the run-time.

▸ = logarithmic

▸ Doubling the input size, will increase the runtime by a constant.

▸ = linear

▸ Doubling the input size, will result to double the run-time.

▸ single for loop

▸ = quadratic

▸ Doubling the input size, will result to quadrupling the run-time

▸ nested for loop

▸ Time complexities for selection, insertion, and merge sort.

O(1)

O(log2 n)

O(n)

O(n2)

Lecture 25

FINAL EXAM STUDY GUIDE

LECTURE 25

GOOD LUCK!

