CS051A

INTRO TO COMPUTER SCIENCE WITH TOPICS IN Al

8: Scoping and debugging

TODAY'S LECTURE IN A NUTSHELL

Lecture 8: Scoping and debugging

» Scoping
» Debugging

» Strings

SCOPING 3

2C0PC.PY

» What will be printed out when we run scope.py?

» When we run the file, the first two functions, double_input and triple_input,
will get defined.

» Then, the interpreter will execute the three statements at the end of the file, one
at a time.

» The first print statement will print out 20.
» The second print statement will print out 30.
» Why not 60, that is in double_1nput we assigned 20 to val as the first line.

» val = 2*val updates the value of the parameter NOT the variable
outside the function.

https://cs.pomona.edu/classes/cs51a/examples/scope.txt

SCOPING

Scope

» The scope of a variable is the portion of the code we can reference that variable in and have it be valid.
» When we declare a variable in the Python console/shell, e.g., X = 10, what is its scope?

» The scope is any shell statements/expressions typed after it.
» When we declare a variable (outside a function) in a file, what is its scope?

» anywhere below it in the file. Remember, running a program is very similar to typing those commands
into the shell

» When we declare a variable inside a function, what is its scope?
» anywhere below it but within the function
» What is the scope of the parameters?
» anywhere within the function
» It doesn't really make sense outside of the function since we wouldn't have a value for it

» Additionally, the scope also defines the context for a variable reference.

SCOPING 5

scopel.py

» What will be printed out when we run scope2.py?
» The program starts at the top and declares three global variables X, y, and z.
» Then, it defines the function mysteryl.
» Then it calls mysteryl with the arguments 10 and 20.
» The parameter a is associated with the value 10. The parameter z gets the value 20.

» Notice that this is different than the global variable z! In particular, when we execute z = 100, this reassigns the value
of the local z, but not the global.

» The function prints out s, X, y, and z.
» Sisalocal variable. x and y are global. z is the parameter.
» And then sets the value of the local variable z to 100.
» After mysteryl returns, we print out the values of the global variables X, y and z.
» X and y weren't changed anywhere. z being changed was the parameter not the global z.
» What would happen if we had uncommented mystery2 and then added a call to it at the end and ran scope2.py?

» Error. The scope of a is only defined within mystery1, so it cannot be accessed anywhere outside the function.

https://cs.pomona.edu/classes/cs51a/examples/scope2.txt

TODAY'S LECTURE IN A NUTSHELL

Lecture 8: Scoping and debugging

» Scoping
» Debugging

» Strings

DEBUGGING
When things go wrong

» The quadruple_input function in debugging.py

code attempts to quadruple the input value by adding it
four times.

» However, no matter the input it returns 6.

>>> quadruple_input(5)
6
>>> quadruple_input(4)
6
>>> quadruple_input(6)
6

https://cs.pomona.edu/classes/cs51a/examples/debugging.txt

DEBUGGING

Debugging

» Abug is a behaviorin the code that is not intended.
» Debugging is the practice of trying to find and fix bugs.

» You might be able to look at the code and find the bug in
this example. However, if you can't, you can try and add
more information to your program to figure out what the
problem is.

» Adding print statementis one good way to figure out
what your function is doing

DEBUGGING

debugging-with-prints.py

: : , >>> quadruple_input(5)
» If we run this version, we start to see what the problem is. d P P

A: 05
» The problem is that we've used the input parameter as - -
the variable in the for loop and the value is getting lost! B:
.. : : : C 0 0
» The fix is to use a different variable name here (e.g., 1)
» When you're all done debugging and your code works, B:
make sure to remove the print statements! C: 11
» It's worth taking ten seconds to make your print I;—
formatting nice: C:
» In loop vs out of loop, - -
B: 33
» Iteration boundaries,
» Labels for positions. D: 63

https://cs.pomona.edu/classes/cs51a/examples/debugging-with-prints.txt

DEBUGGING 10

The debugger

» Use the little bug # icon to run a special debugging program.

» It runs Python code in a special way that is under the control of
another program

» When the program breaks (because you asked it to with a "break
point" ® by clicking in the gutter near the line numbers, you can...

» Step in/step out/step over the next line of code (if it's not stuck at
an error, of course).

» View call stack.

» View stack frame, i.e. variables in local scope.

TODAY'S LECTURE IN A NUTSHELL

11

Lecture 8: Scoping and debugging

» Scoping
» Debugging

» Strings

STRINGS

String methods that might come handy

» Remember, strings are immutable.

» S.lower(): returns a copy of the string s converted to
lower case.

» s.replace(Cold, new): returns a copy of s with all
occurrences of substring old replaced by new.

» S.find(sub): returns the lowest index in string s where
substring sub is found.

» s.find(sub, start):returnsthe lowestindexin
string S where substring sub is found within s[start:].

» s.find(sub, start, end): returnsthe lowest index
in string S where substring sub is found within

s[start:end].

>>> fruit = "Banana"
>>> fruit.lower()
"banana‘’

>>> fruit

'Banana‘’

>>> fruit.replace("a", "o"
'Bonono'

>>> fruit

'Banana‘’

>>> fruit

>>> fruit

'Bonono'

>>> fpuit.find("a")
-1

>>> fruit.find("o")
1

>>> fruit.find("o", 3)
3

>>> fruit.count("o")
3

>>> fruit.count("a")

= fruit.replace("a",

12

||°||)

STRINGS 13
Practice Time

» Write a function find_letter(string, letter) which
returns the index of the first occurrence of Letter in
string.

>>> def find_letter(string, letter):
return string.find(letter)

>>> find_letter("hello", "1")

>>> def find_letter_alternative(string, letter):
for index in range(len(string)):
if string[index] == letter:
return index
return -1

>>> find_letter_alternative("hello", "1")

ASSIGNED READINGS AND PRACTICE PROBLEMS

14

Resources

» Textbook: Appendix (Debugging)

» Sscope.py

» scopel.py

» debugging.py

» debugging-with-prints.py

Practice Problems

» Practice 5 (solution)

Homework

» Assignment 4

https://runestone.academy/ns/books/published/thinkcspy/Appendices/errorsAndDebug.html
https://cs.pomona.edu/classes/cs51a/examples/scope.txt
https://cs.pomona.edu/classes/cs51a/examples/scope2.txt
https://cs.pomona.edu/classes/cs51a/examples/debugging.txt
https://cs.pomona.edu/classes/cs51a/examples/debugging-with-prints.txt
https://cs.pomona.edu/classes/cs51a/problems/practice5.txt
https://cs.pomona.edu/classes/cs51a/problems/practice5-solution.txt

