CS51A - Assignment 9

Due Sunday, April 10th at 11:59pm

| LovE cHEss! THE CONTEST OF MINDS IT IS THRILLING TO IMACINE THESE

TWO ARMIES JOINING IN COMBAT,
STRUGGLING TO BEST ONE ANOTHER :
ON THE BATTLEHELD! FIGHTING TO ACHIEVE VICTORY THROUGH

Your MAJESTY, THE ENEMY HAS
SURROUNDED YOUR POSITION. WE FEAR
THAT THERE MAY BE NO ESCAPE.

YEP, LET'S SURRENDER.

i,
.-

https://www.buttersafe.com/2013/03/28/chess/

Alex Culang and Raynato Castro Buttersafe

For this assignment, you will be using depth first search to find solutions to the N queens problem!

As always (and particularly for this assignment), read through the entire handout before you start
working.

Starter

You will be designing the state class that will be responsible for representing the state of the board
and for asking questions about the board, specifically, if it’s a goal state and what valid states you

can get to from the current state. Once you have defined this functionality, then you should be
able to solve the puzzle with any search algorithm.

At
http://www.cs.pomona.edu/classes/csbla/assignments/assign9-starter.zip

I have provided an implementation of depth first search for you and some additional code that runs
the depth first search and prints what is found (currently commented out). Create a folder called
assignment9, download the .zip file, unzip it, and then open up assign9.py. You should write
you code for the NQueenState above the code that I've provided.

A Class for the N Queens Problem

To search for the state of possible solutions to the N queens problem (and many similar problems)
we need to be able to do three key things:

e Construct the starting state
e Determine if a state is a goal state

e From a state, determine what are the “next” states that we can get to by performing an
action. In our case, it will be putting one queen down in the next available row (working
from the top down).

Specification

To support this functionality, write a class called NQueenState. The class should have the following
instance variables:

- self.size: the size of one side of the chess board.

- self.num_queens_placed: the number of valid queens that have been placed on the board.
We are going to make sure that we only create states where there are no queens attacking
each other.

- self.board: a list of lists (or you can think of it as a matrix) representing the state of the
board. Entry self.board[row] [col] should be 1 if a queen is place there, 0 otherwise.

For example, the following board:

would be represented as:

({1, o, 0, 0, 0, 0, 0, O],
o, o, o, o, 1, 0, 0, 01I,
(o, 1, o, 0, 0, 0, 0, 0],
(o, o, o, 0, 0, 0, 0, 11,
(o, o, o, 0, 0, 0, 0, 01,
(o, o, o, 0, 0, 0, 0, 01,
(o, o, o, 0, 0, 0, 0, 01,
(o, o, 0, 0, 0, 0, 0, 011

(Note, if you actually were to print this out it would be printed as one long line, but I've
formatted it to be more readable.)

Your class should have at least the following methods:

- __init__

Should take one parameter, the size of the side of the board and construct a new state with
a board with no queens placed. For example:

start_state = NQueenState(8)

would construct a state with a normal sized chess board (8 by 8).

- __str__

Doesn’t take any parameters and returns a string representation of the board. Specifically, it
should look like:

Board size: 8

Number of queens placed: 8
(1, o, 0, 0, 0, 0, 0, O]
o, o, 0, 0, 1, 0, 0, 0]

(o, o, 0, 0, 0, 0, 0, 1]
[0, o, 0, 0, 0, 1, 0, 0]
(o, o, 1, 0, 0, 0, 0, 0]
(0o, o, 0, 0, 0, 0, 1, 0]
(o, 1, 0, 0, 0, 0, 0, 0]
(o, o, 0, 1, 0, 0, 0, 0]

with the board size, then the number of queens placed and then the board formatted a row
at a time.

is_valid_move

Takes two parameters, the row and column (indexed starting at 0, so (0, 0) is the upper
left corner), and returns True if putting a queen at row, col on this board would result in a
valid state, False otherwise. A placement of a queen is valid if:

1. We haven’t already placed the size of the board (i.e., self.size) queens on the board.
2. The space doesn’t have a queen in it already.

3. A queen there wouldn’t attack any other queens on the board.

The last of these constraints is going to be the most work to check since you’ll need to check
that there isn’t any queen anywhere in that row already, that there isn’t a queen anywhere
in that column already, and that there isn’t a queen anywhere diagonally on the board from
this queen (see the hints for more on this last one).

Note that this function does NOT modify the board. It only asks IF putting a queen there
would be valid.

add_queen

Takes two parameters, the row and column, and returns a new state that is a copy of the
current state, but has a queen put down at row, column. You may assume that the position
is a valid position (though it won’t hurt to put in a call to your is_valid move method and
print out an error, just in case).

There is a module called copy that has a function called deepcopy that will allow you to
create a deep copy of the current state. To use it include import copy at the top of your
progam and then to get a copy of the current object you can call the deepcopy method on
self:

new_state = copy.deepcopy(self)

new_state will then be an instance of the NQueenState class that has all the same values, etc.
as the current object. After copying, you will then need to update this new state appropriately
by accessing its instance variables (e.g., new_state.board ...) then return it. Make sure
that you’re updating all of the instance variables of this new state appropriately, not just the
board.

- next_states

Doesn’t take any parameters, but returns a list of valid states that can be reached by adding
one more queen to the board. There are many ways that this could be implemented. We're
going to impose the additional restriction that we’re going to add queens from the top row
and work our way down. So, from the start state (with an empty board) the next_states
method will return a list of all the states with the queen placed at any of the entries in the
top row only.

For example, if we were to call the next_states function on:

To generate these we only considered the eight possible (or, in general, self.size) locations
in the next row, of which only these two don’t result in conflicts.

Note, this method should utilize the previous two methods.

- is_goal

Doesn’t take any parameters and returns True if this state represents a goal state and False
otherwise. Note that since we’re making sure that only valid states are generated, then this
function is very easy. (Hint: if your board is of size 8 and you have 8 queens on the board
AND it’s a valid board, then it’s a solution.)

You may (and I would encourage you to) implement additional methods that may help make that
above methods easier to do. Like writing functions, it is a good idea to break a method down into
sub-methods (in reality, methods are just special versions of functions so all the “good” style things
we’ve talked about with respect to functions also applies to methods).

Once you’ve implemented the class, uncomment the DFS code at the end of your program. You
will submit your class with the working program.

Hints/guidance

e Make sure you understand exactly what the class is storing and representing and what each
of the methods are supposed to do. If you have questions, come talk to us.

e Do NOT try and write all of the methods and then test your class by running the dfs code
and hoping that it works. It very likely won’t and then you won’t know where your problem
is. Write one method at a time and then test that one method to make sure it works.

Here are a few examples of how you can do this:
— init

state = NQueenState(4)
print(state.size)
print(state.num_queens_placed)
print(state.board)

would print

4
0
tto, o, o, o1, fo, o, o, o], [0, O, O, O], [0, O, O, 0O]]

— str

state = NQueenState(8)
print(state)

— is_valid_move

state = NQueenState(4)
print(state.is_valid_move(0, 0)) # should be True
state.board[0] [0] = 1

state.num_queens_placed = 1
print(state.is_valid_move(0, 0)) # should be False
print(state.is_valid_move(O, 3)) # should be False
print(state.is_valid_move(1l, 2)) # should be True

H #*

— add_queen

state = NQueenState(4)

new_state = state.add_queen(0,0)

print(state) # should print out the original, empty state

print(new_state) # should print out the new state with a 1 in the upper left corner

This list of examples is not meant to be extensive, but is meant to give you an idea of how
you can test your methods one at a time.

e As always, look at the examples from class. They often have portions of code that do similar
things to what you will be doing here.

e The hardest part about checking if there is a conflict, is checking if a new queen attacks any
of the existing ones diagonally. Consider the following diagram where we’re trying to check
if a queen at row, column (r, c¢) would conflict diagonally on a board of size 4:

r-3, c-3 r-3, c+3

r-2, c-2 r-2, c+2

r-1, c-1 r-1, c+1

. C

r+1, c-1 r+1, c+1

r+2, c-2
r+2, c+2

r+3, c-3
r+3, c+3

We need to check all of the entries that fall inside the board (besides r,c). Think about how
you can do this with one or more loops. You can either do this by enumerating only those
in the board and checking those or enumerating all of the ones in the figure and then also
checking if they’re actually in the bounds of the board. Either way is fine, though I personally
think the latter is easier.

e Finally, make sure you think about how all of the methods fit together. Some of the later
methods I've asked you to implement will use (or will be much easier to write if you use) the
previous methods. I've written them in the description above in roughly the order I'd suggest
implementing them.

e There are 2 solutions to the 4-queens problem and 92 to the 8-queens problem.

When you’re done

You should have a single .py file with both the NQueenState class as well as the dfs program called
assign9.py.

Make sure that your program is properly commented:
e You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.
e Each function should have an appropriate docstring.

e Each class should also have a docstring (right after the class definition) give a high-level
description of the class.

e Include other miscellaneous comments to make things clear.
In addition, make sure that you’ve used good style. This includes:

Following naming conventions, e.g. all variables and functions should be lowercase.

Using good variable names.

Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

Make sure that none of the lines are too long, i.e. cross the red line in Wing.

Submit your assign9.py file online using the courses submission mechanism.

Grading

points
init 3

str

is_valid move
add_queen

next_states

is_goal

meets specifications

WIW N W W ot w

comments/style
total ‘ 25 ‘

if

JUST THINK Z0GicALLy, THE GORL | [T GUEBS OCCASIONALLY YOU
15 CHECKMATE, S0 YOU SHOULD | | NEED TO MOVE BACKWARD, BUT
ALMAYS MOVE PIECES 70w/ARD | | ITD BE TRMALTO MAKE A UIST
THE OTHER PLAVERS KING. | | OF THOSE CIRCUMSTANCES AND—
\)
HAVE YOU EVER MOET GAME IENT _
RAED Ces? || ot CEoaen, TR SRR,
(NoT MucH, BuT- o KNIGHTS ARE TOD WEAK...
WANNA? ! HHOVES
OROK | cHeckmate

o

https://xked.com/1112/

