CS51A—Assignment 3
Chatbot

Due: Sunday, February 13, at 11:59pm

My
OVERALL
HEALTH

TIME

THE DAY I REALIZED
I COULD COCK BACON
WHENEVER I IJANTED,

https://xked.com/418/

For this assignment, we’re going to be developing a basic chatbot, which will respond to user
questions. Making an actual chatbot, particularly one that is able to make good responses in a
range of situations, is hard, so don’t expect ours to be perfect!

Introduction to our Movie Quotes

The key to our chatbot will be a dataset of over 300K spoken lines from 617 moviesﬂ I’ve prepro-
cessed this dataset to create a collection of 244K pairs of quotes from movies that contains a first
quote by one character and then the response from a second character.

First, let’s get access to the movies quotes:

— Open up PyCharm and create a new project assignment3 in the folder that you store all
your csdla assignments.

!The quotes are a processed version of the data from: https://www.kaggle.com/Cornell-University/
movie-dialog-corpus

https://www.kaggle.com/Cornell-University/movie-dialog-corpus
https://www.kaggle.com/Cornell-University/movie-dialog-corpus

— Make a new Python file called assign3.py. Add your name and the assignment number in
comments to the top of this file.

— Download the following file and unzip it: https://cs.pomona.edu/classes/cs51la/assignments/
assign3-starter.zip

— Copy the files from that unzipped starter into the folder containing your assign3.py file. To
find that folder, you can right click your project folder in PyCharm and use the Show in ...
menu item (it might say Finder or Explorer or some other file browsing program), or you can
just navigate there in your file browser.

— Delete the zip file. Your project folder should now have three files in it: assign3.py,
assign3_quotes.py, and movie_quotes.txt. If you're curious, you can open this last file
and you can see the pairs of quotes.

— Finally, let’s access the quotes in our program. Import the helper functions for this assignment
by adding the following into your assign3.py file below the header comments:

from assign3_quotes import *

Run your program by right clicking and selecting “Run in Python Console” and then test
and make sure everything loaded correctly. There are two functions in the assign3_quotes
module: get_quotes() and get_practice_quotes(). The first returns the real quote data
and the second returns some sample data that may be useful for debugging your programs.

In both cases, the functions return the quotes data as a list of tuples (specifically, a list of
pairs). In each tuple/pair the first element represents the first quote and the second element
the response quotes. For example, the practice data has five pairs:

>>> get_practice_quotes()
[(’quotel’, ’quote2’), (’first’, ’second’), (’first they said this’, ’then this’),
(’what?’, "that’s what"), (°what?’, "now you’ve it!")]

We can look at the first pair of real quotes:

>>> quotes = get_quotes()
>>> quotes[0]
(’they do to!’, ’they do not!’)

The first speaker said “they do to!” and then the second speaker responded “they do not!”.
Take a look at a few of the other pairs to get a feeling for what the data looks like. Make
sure that you understand exactly how this data is being stored and what it represents.

Note: when you import the assign3_quotes module, python will create a directory called
__pycache__ in your assignment directory. Just ignore this directory.

A word of warning: This data comes from real movies and some of those movies have adult (i.e.,
R-rated) content. If you think this will be problematic for you, I'm happy to work with you to find
other content since the particular data isn’t critical for the assignment.

https://cs.pomona.edu/classes/cs51a/assignments/assign3-starter.zip
https://cs.pomona.edu/classes/cs51a/assignments/assign3-starter.zip

Movie Quotes Analysis

Before we write our chatbot, we’re first going to do some analysis of the quotes.

To make grading easier, add the following to your file to delimit all of your work for this section

Movie Quotes Analysis Section

1. [2 points] Write a function called is_question that takes as input a string and return True
if that string is a question (i.e., ends in a question mark) or False otherwise.

>>> is_question("do you want some pie?")
True

>>> is_question("of, course!")

False

2. [3 points] Write a function called get_first_quotes that takes as input a list of tuples
(i.e., our quotes data format) and returns a list of all of the first items in the tuples, i.e.
the first quotes. Hint: you’ll need to build your answer from scratch by iterating through all
of the quote pairs and grabbing what you need as you go.

>>> simple_quotes = get_practice_quotes()
>>> get_first_quotes(simple_quotes)
[’quotel’, ’first’, ’first they said this’, ’what?’, ’what?’]

3. [2 points] Write a function called get_first_questions that takes as input a 1ist of tuples
(i.e., quotes data) and returns a list of all of the first quotes that are questions.

>>> simple_quotes = get_practice_quotes()
>>> get_first_questions(simple_quotes)
[’what?’, ’what?’]

4. [1 points] Write a function called count_question_quotes that takes as input a list of
tuples (i.e, quotes data) and returns the number of first quotes that are questions. Hint:
this function can be written very simply using our previous functions.

>>> simple_quotes = get_practice_quotes()
>>> count_question_quotes(simple_quotes)
2

In a comment right below your function, write how many first quotes there are in the real
data that are questions.

5. [3 points] Write a function called get_average question length that takes as input a list
of tuples (i.e, quotes) and returns the average length (in characters) of all of the first quotes
that are questions.

>>> simple_quotes = get_practice_quotes()
>>> get_average_question_length(simple_quotes)
5.0

Building a Chatbot

To make grading easier, add the following to your file to delimit all of your work for this section

Chatbot Section

Chatbot Overview

Now that you're familiar with our quotes data, we’re going to use it to build a very basic chatbot
that will have a conversation by responding to questions. The key to the “intelligence” of our
chatbot will be the quotes. In particular, the chatbot will try and find the question that the user
asks as a first entry in the quotes data and then respond with the corresponding second entry.

The chatbot will have three types of responses:

— If the user enters something that isn’t a question, then the chatbot will respond with ‘I
only respond to questions!’’.

— If the user enters a question, but that question never occurs as a first quote in our quotes
data, then the chatbot will respond with ‘‘I don’t know.’’

— If the user enters a question and that question does occur one or more times as a first quote
in our quotes data, then the chatbot will respond by randomly picking a response from the
list of all second entries that had the question as the first entry.

Here is an example transcript. Note that because of the randomness, the responses will not be
identical if you run the same questions.

>>> chatbot ()
Welcome!

Ask me anything. When you’re done, just type ’bye’
- who are you?
I am the Borg.
- what is your name?
My name is Sir Launcelot.
- where did you come from?
Do you believe in time travel, Donnie?
- I don’t understand.
I only respond to questions!
- is that true?
Well, truth is for suckers, isn’t it?.
- come On Now
I only respond to questions!
- are you a robot?
I don’t know.
- are you a person?
I don’t know.
- what are you?
You know.
- bye

Implementing the Chatbot

When writing a program like this, it is important that you build up the functionality by writing
smaller functions that do some of the work and then combining them to get the final program. For
this assignment, we’re going to help guide you through this process.

6. [3 points] Write a function called get_responses that has two parameters: our quotes
data (list of tuples) and a string representing a question. The function should return a list
containing all of the second entries in the quotes data where the question exactly matches
the first entry.

>>> simple_quotes = get_practice_quotes()

>>> get_responses(simple_quotes, "what?")

["that’s what", "now you’ve it!"]

>>> get_responses(simple_quotes, "what is your name?")

(]

7. [2 point] Write a function called get_random_from_list that takes as input a list and returns
a random element from that list. Don’t forget that to access the random functions, you’ll
need to import the random module.

>>> get_random_from_list([1, 2, 3, 4, 5])

4
>>> get_random_from_list([1l, 2, 3, 4, 51)

3

>>> get_random_from_list(["apples", "bananas", "cranberries"])
’bananas’

>>> get_random_from_list(["apples", "bananas", "cranberries"])

’cranberries’

8. [3 points] Write a function called respond that has two parameters: our quotes data (list
of tuples) and a string representing a question. If the question matches any first entry in the
quotes data, then the function should randomly pick a response from the list of all second
entries that had the question as the first entry. If there were no occurrences of the question
in the quotes data, then the function should return “I don’t know.”

>>> simple_quotes = get_practice_quotes()

>>> respond(simple_quotes, "what?")

"that’s what"

>>> respond(simple_quotes, "what?")

"now you’ve it!"

>>> respond(simple_quotes, "what?")

"now you’ve it!"

>>> respond(simple_quotes, "what is your name?")
"I don’t know."

>>> respond(simple_quotes, "what is your name")
"I don’t know."

>>> respond(simple_quotes, "banana")

"T don’t know."

Hint: You’ve already done a lot of the work for this function with the previous two functions.
Use them in this function!

9. [5 points] Write a function called chatbot that has no parameters and implements the
chatbot behavior describe above in “Chatbot Overview”. The function should first print out
the user instructions. The function should then continue to prompt the user for a question (see
transcript above) and respond appropriately until the user enters “bye”. The response should
be one of the three responses described above. Questions can be entered as any capitalization
variants, even though the quotes data is all lowercased.

Advice:

e Build the behavior of this function incrementally, testing it as you go. There are many
ways you might do this, but here’s one approach:

- Write a version of the function that prints out the intro information and repeatedly
prompts for input until you enter “bye”, but doesn’t respond at all.

- Add in checking for whether or not it’s a question. You can just print out some
generic response if it is a question for now.

- Add in code to actually get an appropriate response and print it out.

- Add in any additional functionality that you’re still missing.

o All of the first quotes are lowercased, so make sure that you lowercase the user question
before searching, otherwise, you won’t get a match.

e When you're first testing it, use the practice quotes rather than the real quotes since it
will allow you to test all of the three different response cases very easily. Once you're
sure it’s working, you can switch the code to read the real data.

When you’re done

Make sure that your program is properly commented:

e You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

e You should have comments delimiting the two sections.
e Each function should have an appropriate docstring.

e Include other miscellaneous comments to make things clear.
In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g. all variables and functions should be lowercase.
- Using good variable names.

- Good use of booleans. You should NOT have anything like:
if boolean_expression == True:
or

if boolean_expression == False:

instead use:
if boolean_expression:
or
if not (boolean_expression): # or some other way of negating the expression

- Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

- Make sure that none of the lines are too long, i.e. cross the grey line of PyCharm.

1 Ethics

IEEE SpectrumE] recently identified six worst-case scenarios about the future of AI. What are those?
Choose one to expand whether you agree or disagree and how we can prepare and prevent it.

When you’re done

Submit your assign3.py file (and not any of the starter that you downloaded) online using the
courses submission mechanism under “assign3d”, along with your pdf response to the ethics prompt.

Grading
points
Quotes analysis 11
Chatbot 13
Comments, style
Ethics prompt 1
’ total ‘ 28 ‘

2IEEE Spectrum is a magazine edited by the Institute of Electrical and Electronics Engineers, the largest profes-
sional organization of electrical/electronic engineers (computer scientists are often members, t00).

https://spectrum.ieee.org/ai-worst-case-scenarios

