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What is Al?

Think like a human Think rationally
Cognitive Modeling Logic-based Systems

Act like a human Act rationally

Turing Test Rational Agents
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Solve the maze!
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Solve the maze!
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Solve the maze!
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How did you figure it out?



One approach

What now?



One approach

Three choices



One approach

Pick one!
What now?



One approach

Still three options!

Which would you explore/pick?



One approach
=

Most people go down a single
path until they realize that it's
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One approach

Keep
exploring



One approach
=

Keep
exploring



One approach




One approach
=

Are we stuck?

No. Red positions are just possible options we haven’t explored



One approach
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How do we
know not to go
left?




One approach
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Have to be careful and keep
track of where we'’ve been if
we can loob




One approach
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Now
what?
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One approach
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Search problems
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What information do we
need to figure out a
solution?



Search problems

___
Where to start

Where to finish (goal)

What the “world” (in this case a maze) looks like

We’'ll define the world as a collection of discrete
states

States are connected if we can get from one
state to another by taking a particular action

This is called the “state space”



State space example
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State space example
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State space example

For a given problem, still could have different state-spaces

How many more states are there?
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State space example




State space example

Now what?




State space example




State space example
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State space example




State space example
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Search algorithm

Keep track of a list of states that we could
visit, we'll call it “to_visit”

General idea:
take a state off the to visit list

If it's the goal state

“we're done!

If it’s not the goal state

" Add all of the next states to the to visit list

repeat
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to_visit g e .

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state How do we start?
Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list to_vistt fot )
- if it’s the goal state 1
we’'re done!
- if it’s not the goal state Add start to to_visit

Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list to_visit St )
- if it’s the goal state
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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to_visit s

- take a state off the to visit list >
- if it's the goal state 3
we're done! 4
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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Dead-end. What do
we do now?
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- take a state off the to visit list to_visit X :
- if it’s the goal state 3
we're done! 4 list keeps track of
- IT IU's not the goal state where to go next, i.e.
Add all of the next states to the states we know
the to_visit list about but haven't

- repeat | explored
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to_visit s

- take a state off the to visit list >
- if it’s the goal state 4
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat



- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

to_visit
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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Is it a goal state?
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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to_visit s

- take a state off the to visit list >
- if it’s the goal state 4
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat
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- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat
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_take a state off the to visit list to_visit fet )
- if it’s the goal state 4
we’'re done! How was the to visit
- if it’s not the goal state list organized in this
Add all of the next states to example, i.e., what
the to_visit list order?

- repeat It’s a stack!!! (LIFO)
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_take a state off the to visit list to_visit fet )
- if it’s the goal state 4
we're done! What would happen
- if it’s not the goal state if we used a queue?

Add all of the next states to
the to_visit list
- repeat



Search algorithms

I
add the start state to to visit

Repeat
take a state off the to visit list

If it's the goal state
" we're done!

If it’s not the goal state
" Add all of the next states to the to_visit list



Search algorithms

I
add the start state to to visit

Repeat
take a state off the to visit list

If it's the goal state
" we're done!

If it’s not the goal state
" Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue



What order will BFS and DFS visit the states
assuming states are added to to visit left to right?

N
add the start state to to visit 1

Repeat m
take a state off the to_visit list
if it’s the goal state / /\
“ we’'re done! f . \

if it’s not the goal state 5 9) /7 8
= Add all of the successive states to the
to_visit list
9

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue



What order will BFS and DFS visit the states?
___

DFS:1,4,3,8 7,.6,9 2.5 1

Why not 1, 2, 57 /@/%ﬂ@
6 /7 8

5

Depth first search (DFS): to_visit is a stack )
Breadth first search (BFS): to visit is a queue



What order will BFS and DFS visit the

states?
=
DFS:1,.4, 3,8, 7,6,9,2,5 1
e
5 6 7 8
1
STACK 3

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to visit is a queue



What order will BFS and DFS visit the

states?
_
DFS:1,4,3,8,7,6,9 2.5 1
T
4 AR A NN
3 5 6 7 8
2
STACK 9

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue



What order will BFS and DFS visit the

states?
=
DFS:1,4,3,8,7,6,9,2,5 1
e
5 6 7 8
2
STACK 3

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue



What order will BFS and DFS visit the

states?
___

DFS:1,4,3,8,7,6,9 2.5 1

BFS:1,2, 3, 4,5 m
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Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue




Search variants implemented
=

add the start state to to visit

def dfs(start_state):
s = Stack()
return search(start_state, s)

Repeat def bfs(start_state):

et q = Queue()
take a state off the to_visit list return search(start_state, q)
if it’s the goal state

" we're done! def search(start_state, to_visit):

if i to_visit.add(start_stat
if it's not the goal state 0_visit.add(start_state)

" Add all of the successive states while not to_visit.is_empty():
to the to_visit list current = to_visit.remove()

if current.is_goal():
return current
else:
for s in current.next_states():
to_visit.add(s)

return None



What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5




What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5,3,6,9,7,8

What search algorithm is this?



What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5,3,6,9,7,8

DFS!



