SEARCH

What is Al?

Think like a human Think rationally
Cognitive Modeling Logic-based Systems

Act like a human Act rationally

Turing Test Rational Agents
—

/

Next couple of weeks

Solve the maze!
R ——————SSSSsSs,

Solve the maze!

<HEE N

s

Solve the maze!

jEﬂ_ﬂJ_U_IWLHTLﬂ _, ____ ____|
—5| |||, A = L
.
e
e
e
e e
=iy, __ =y

L Iﬂﬁm
wﬁ{ﬁﬁﬂ =7
%%@W@%ﬁ%ﬂjﬂrﬁ

Solve the maze!

|
> m

-
r

EEN
EEENE»>

How did you figure it out?

One approach

What now?

One approach

Three choices

One approach

Pick one!
What now?

One approach

Still three options!

Which would you explore/pick?

One approach
=

Most people go down a single
path until they realize that it's

\NMYONaol

One approach

Keep
exploring

One approach
=

Keep
exploring

One approach

One approach
=

Are we stuck?

No. Red positions are just possible options we haven’t explored

One approach
=

|
_’.

How do we
know not to go
left?

One approach
=

|
_’.

Have to be careful and keep
track of where we'’ve been if
we can loob

One approach
=

—bll

e

Now
what?

One approach
=

+
L
ad LLILL
EEm EE |
EEEEEEE
EEEEE W

One approach
=

e
= e e e
']
[=
L I -
. N
y
;»r ’\ 0 h
f \
¥ — \
! . —~4
| o -

|- : &
s LLILLINL
EEmEE |
EEEEEEN
EEEEE B

Search problems
I .

> |

—

What information do we
need to figure out a
solution?

Search problems

Where to start

Where to finish (goal)

What the “world” (in this case a maze) looks like

We’'ll define the world as a collection of discrete
states

States are connected if we can get from one
state to another by taking a particular action

This is called the “state space”

State space example
N

A/N .

State space example

‘%\ +
| i

State space example

For a given problem, still could have different state-spaces

How many more states are there?

le
P
m
3

X

ace e

9

S

te

ta

S

State space example

State space example

Now what?

State space example

State space example

+
Now what? +iﬁ
o €

State space example

State space example
i @{.1
+@ *@ 'ﬂ_ %\ﬁ
'L
Could we have ﬂ/\ﬂ .
found the exit any s e

other way? ﬂ
o iz&

@

Search algorithm

Keep track of a list of states that we could
visit, we'll call it “to_visit”

General idea:
take a state off the to visit list

If it's the goal state

“we're done!

If it’s not the goal state

" Add all of the next states to the to visit list

repeat

] 4
- /\> A
>e
4 §

o ++.o~ + +ﬁ S T

el ol

to_visit g e .

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state How do we start?
Add all of the next states to
the to_visit list
- repeat

] 4
- /\> A
>e
4 §

o ++.o~ + +ﬁ S T

el ol

e o
- take a state off the to visit list to_vistt fot)
- if it’s the goal state 1
we’'re done!
- if it’s not the goal state Add start to to_visit

Add all of the next states to
the to_visit list
- repeat

mm oyl

/\ ,
e Tg
‘/\ M Se

= L
- take a state off the to visit list to_visit St)
- if it’s the goal state
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat

il

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

+

| 4

7\

Ts

to_visit

2
3
4

A

g

=11 S el +

s

| Tl 7 +

*-

<

+ﬁ

ﬂ
.

v

to_visit s

- take a state off the to visit list >
- if it's the goal state 3
we're done! 4
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat

il

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

+

| 4

7\

Ts

to_visit

3
4

A

g

'S ' @J

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

| 4

7\

Ts

to_visit

3
4

A

|
ﬂij

Dead-end. What do
we do now?

|4 s '

el ol

9"

- take a state off the to visit list to_visit X :
- if it’s the goal state 3
we're done! 4 list keeps track of
- IT IU's not the goal state where to go next, i.e.
Add all of the next states to the states we know
the to_visit list about but haven't

- repeat | explored

4

el frr]] TR
. O
/>
4

*-

+ﬁ

ﬂ
.

v

to_visit s

- take a state off the to visit list >
- if it’s the goal state 4
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

to_visit

5
6
4

N\

+
—»

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

Ts

to_visit

§)
4

=
: [

sl .
"\

rﬂ

A

/

Is it a goal state?

N\

—»

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

+

| 4

7\

Ts

to_visit

§)
4

A

g

= = |/ &=

)
\ ~ $e

+@ I» »ﬁ '
s

*-

<

+ﬁ

ﬂ
.

v

to_visit s

- take a state off the to visit list >
- if it’s the goal state 4
we’'re done!
- if it’s not the goal state Is it a goal state?

Add all of the next states to
the to_visit list
- repeat

.

i

- take a state off the to visit list
- if it’s the goal state
we're done!
- if it’s not the goal state
Add all of the next states to
the to_visit list
- repeat

T

7\

+

to_visit

4

A

o G S

K] = el +
B 2 5
*ojﬂ‘ + nmild + /\ +
' '" I T4 +m

9"

_take a state off the to visit list to_visit fet)
- if it’s the goal state 4
we’'re done! How was the to visit
- if it’s not the goal state list organized in this
Add all of the next states to example, i.e., what
the to_visit list order?

- repeat It’s a stack!!! (LIFO)

e ® e 8 ‘/\, A

el ol

- ot
_take a state off the to visit list to_visit fet)
- if it’s the goal state 4
we're done! What would happen
- if it’s not the goal state if we used a queue?

Add all of the next states to
the to_visit list
- repeat

Search algorithms

I
add the start state to to visit

Repeat
take a state off the to visit list

If it's the goal state
" we're done!

If it’s not the goal state
" Add all of the next states to the to_visit list

Search algorithms

I
add the start state to to visit

Repeat
take a state off the to visit list

If it's the goal state
" we're done!

If it’s not the goal state
" Add all of the next states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

What order will BFS and DFS visit the states
assuming states are added to to visit left to right?

N
add the start state to to visit 1

Repeat m
take a state off the to_visit list
if it’s the goal state / /\
“ we’'re done! f . \

if it’s not the goal state 5 9) /7 8
= Add all of the successive states to the
to_visit list
9

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue

What order will BFS and DFS visit the states?

DFS:1,4,3,8 7,.6,9 2.5 1

Why not 1, 2, 57 /@/%ﬂ@
6 /7 8

5

Depth first search (DFS): to_visit is a stack)
Breadth first search (BFS): to visit is a queue

What order will BFS and DFS visit the

states?
=
DFS:1,.4, 3,8, 7,6,9,2,5 1
e
5 6 7 8
1
STACK 3

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to visit is a queue

What order will BFS and DFS visit the

states?
_
DFS:1,4,3,8,7,6,9 2.5 1
T
4 AR A NN
3 5 6 7 8
2
STACK 9

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue

What order will BFS and DFS visit the

states?
=
DFS:1,4,3,8,7,6,9,2,5 1
e
5 6 7 8
2
STACK 3

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue

What order will BFS and DFS visit the

states?

DFS:1,4,3,8,7,6,9 2.5 1

BFS:1,2, 3, 4,5 m

A 4
v

Depth first search (DFS): to visit is a stack
Breadth first search (BFS): to visit is a queue

Search variants implemented
=

add the start state to to visit

def dfs(start_state):
s = Stack()
return search(start_state, s)

Repeat def bfs(start_state):

et q = Queue()
take a state off the to_visit list return search(start_state, q)
if it’s the goal state

" we're done! def search(start_state, to_visit):

if i to_visit.add(start_stat
if it's not the goal state 0_visit.add(start_state)

" Add all of the successive states while not to_visit.is_empty():
to the to_visit list current = to_visit.remove()

if current.is_goal():
return current
else:
for s in current.next_states():
to_visit.add(s)

return None

What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5

What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5,3,6,9,7,8

What search algorithm is this?

What order would this variant visit the
states?

def search(state):
if state.is_goal():
return state
else:
for s in state.next_states():
result = search(s)
if result !'= None:
return result

return None

1,2,5,3,6,9,7,8

DFS!

