NAÏVE BAYES

Joseph C. Osborn CS 51A - Spring 2020

Relationship between distributions

$$P(X,Y) = P(Y) * P(X|Y)$$
joint distribution conditional distribution unconditional distribution

Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

- 1. How likely it is that Y happened?
- 2. Given that Y happened, how likely is it that X happened?

Back to probabilistic modeling

training data

Build a model of the conditional distribution:

P(label | data)

How likely is a label given the data

Back to probabilistic models

For each label, calculate the probability of the label given the data

Back to probabilistic models

Pick the label with the highest probability

Naïve Bayes model

Two parallel ways of breaking down the joint distribution

```
P(data, label) = P(label) * P(data|label)
P(data, label) = P(data) * P(label|data)
P(label) * P(data|label) = P(data) * P(label|data)
```

What is P(label|data)?

Naïve Bayes

$$P(label) * P(data|label) = P(data) * \frac{P(label|data)}{P(label|data)}$$

$$\boldsymbol{P(label|data)} = \frac{\boldsymbol{P(label)} * \boldsymbol{P(data|label)}}{\boldsymbol{P(data)}}$$

(This is called Bayes' rule!)

Naïve Bayes

$$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$$

probabilistic model:

MAX

p(label|data)

 $\frac{P(negative) * P(data|negative)}{P(data)}$

One observation

$$egin{aligned} oldsymbol{P(positive)} * oldsymbol{P(data|positive)} \\ oldsymbol{P(data)} & oldsymbol{\mathsf{MAX}} \end{aligned}$$

$$\frac{P(negative) * P(data|negative)}{P(data)}$$

For picking the largest P(data) doesn't matter!

One observation

For picking the largest P(data) doesn't matter!

A simplifying assumption (for this class)

If we assume P(positive) = P(negative) then:

P(data|positive)

MAX

P(data|negative)

P(data|label)

```
P(data|label) = P(f_1, f_2, ..., f_n|label)
\stackrel{\approx}{*} P(f_1|label) *
P(f_2|label) *
P(f_n|label)
```

This is generally not true!

However..., it makes our life easier.

This is why the model is called **Naïve** Bayes

Naïve Bayes

```
P(f_1|positive)*P(f_2|positive)*...*P(f_n|positive)
P(f_1|negative)*P(f_2|negative)*...*P(f_n|negative)
```

MAX

Where do these come from?

Training Naïve Bayes

training data

probabilistic model:

p(label|data)

An aside: P(heads)

What is the P(heads) on a fair coin?
0.5

What if you didn't know that, but had a coin to experiment with?

$$P(heads) = \frac{number\ of\ times\ heads\ came\ up}{total\ number\ of\ coin\ tosses}$$

Try it out...

P(feature|label)

$$P(heads) = \frac{number\ of\ times\ heads\ came\ up}{total\ number\ of\ coin\ tosses}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

P(feature|positive) = ?

P(feature|label)

$$P(heads) = \frac{number\ of\ times\ heads\ came\ up}{total\ number\ of\ coin\ tosses}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in in the positive label?

$$P(feature|positive) = \frac{number\,of\,\,positive\,examples\,with\,that\,\,feature}{total\,number\,of\,\,positive\,examples}$$

Training Naïve Bayes

- 1. Count how many examples have each label
- 2. For all examples with a particular label, count how many times each feature occurs
- 3. Calculate the conditional probabilities of each feature for all labels:

 $P(feature|label) = \frac{number\ of\ ``label'' examples\ with\ that\ feature}{total\ number\ of\ examples\ with\ that\ label}$

Classifying with Naïve Bayes

For each label, calculate the product of p(feature|label) for each label

```
ellow, curved, no leaf, 602
P(yellow|banana)*...*P(60z|banana)
P(yellow|apple)*...*P(60z|apple)
```

Naïve Bayes Text Classification

Positive

- I loved it
- I loved that movie
- I hated that I loved it

Negative

- I hated it
- I hated that movie
- I loved that I hated it

Given examples of text in different categories, learn to predict the category of new examples

Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

Text classification training

Positive

- I loved it
- I loved that movie
- I hated that I loved it

Negative

- I hated it
- I hated that movie
- I loved that I hated it

We'll assume words just occur once in any given sentence

Text classification training

Positive

- I loved it
- I loved that movie
- I hated that loved it

Negative

- I hated it
- I hated that movie
- I loved that hated it

We'll assume words just occur once in any given sentence

Positive

- I loved it
- I loved that movie
- I hated that loved it

Negative

- I hated it
- I hated that movie
- I loved that hated it

For each <u>word</u> and each <u>label</u>, learn:

p(word | label)

Positive

- I loved it
- I loved that movie
- I hated that loved it

$P(I \mid positive) = ?$

- I hated it
- I hated that movie
- I loved that hated it

Positive

I loved it

I loved that movie

I hated that loved it

P(I | positive) = 3/3 = 1.0

Negative

I hated it

I hated that movie

I loved that hated it

Positive

- I loved it
- I loved that movie
- I hated that loved it

```
P(| positive) = 1.0
P(loved | positive) = ?
```

- I hated it
- I hated that movie
- I loved that hated it

Positive

- I loved it
- I loved that movie
- I hated that loved it

```
P(I | positive) = 1.0
 P(loved | positive) = 3/3
```

- I hated it
- I hated that movie
- I loved that hated it

Positive

- I loved it
- I loved that movie
- I hated that loved it

- I hated it
- I hated that movie
- I loved that hated it

```
P(| positive) = 1.0
P(| positive) = 3/3
P(| hated | positive) = ?
```

Positive

- I loved it
- I loved that movie
- I hated that loved it

Negative

- I hated it
- I hated that movie
- I loved that hated it

```
P(I | positive) = 1.0
P(loved | positive) = 3/3
P(hated | positive) = 1/3
```

 $P(I \mid negative) = ?$

. . .

 $P(word|label) = \frac{number\ of\ times\ word\ occured\ in\ "label"\ examples}{total\ number\ of\ examples\ with\ that\ label}$

Positive

- I loved it
- I loved that movie
- I hated that loved it

```
P(I | positive) = 1.0
P(loved | positive) = 3/3
P(hated | positive) = 1/3
```

Negative

```
I hated it
```

I hated that movie

I loved that hated it

P(I | negative) = 1.0

```
P(word|label) = \frac{number\ of\ times\ word\ occured\ in\ ``label\ "examples}{total\ number\ of\ examples\ with\ that\ label}
```

Positive

- I loved it
- I loved that movie
- I hated that loved it

P(I | positive) = 1.0 P(loved | positive) = 3/3 P(hated | positive) = 1/3

Negative

```
I hated it
```

I hated that movie

I loved that hated it

```
P(| negative) = 1.0
P(movie | negative) = ?
```

 $P(word|label) = \frac{number\ of\ times\ word\ occured\ in\ "label"\ examples}{total\ number\ of\ examples\ with\ that\ label}$

Positive

- I loved it
- I loved that movie
- I hated that loved it

Negative

- I hated it
- I hated that movie
- I loved that hated it

```
P(I | positive) = 1.0
P(loved | positive) = 3/3
P(hated | positive) = 1/3
```

```
P(I | negative) = 1.0

P(movie | negative) = 1/3
```

...

```
P(word|label) = \frac{number\ of\ times\ word\ occured\ in\ "label"\ examples}{total\ number\ of\ examples\ with\ that\ label}
```

Classifying

```
P(I \mid positive) = 1.0 P(I \mid negative) = 1.0 P(I
```

Notice that each of these is its own probability distribution

P(loved| positive)

P(loved | positive) = 2/3

P(no loved|positive) = 1/3

```
P(I \mid positive) = 1.0 P(I \mid negative) = 1.0 P(loved \mid positive) = 2/3 P(hated \mid negative) = 1.0 P(it \mid positive) = 2/3 P(hat \mid negative) = 2/3 P(movie \mid negative) = 1/3 P(movie \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(loved \mid negative) = 1/3
```

How would we classify: "I hated movie"?

```
P(I \mid positive) = 1.0 \qquad P(I \mid negative) = 1.0 \\ P(loved \mid positive) = 2/3 \qquad p(hated \mid negative) = 1.0 \\ p(it \mid positive) = 2/3 \qquad p(that \mid negative) = 2/3 \\ p(that \mid positive) = 2/3 \qquad P(movie \mid negative) = 1/3 \\ p(movie \mid positive) = 1/3 \qquad p(it \mid negative) = 2/3 \\ P(hated \mid positive) = 1/3 \qquad p(loved \mid negative) = 1/3
```

```
P(I \mid positive) * P(hated \mid positive) * P(movie \mid positive) = 1.0 * 1/3 * 1/3 = 1/9
```

```
P(I \mid negative) * P(hated \mid negative) * P(movie \mid negative) = 1.0 * 1.0 * 1/3 = 1/3
```

```
P(I \mid positive) = 1.0 \qquad P(I \mid negative) = 1.0 \\ P(loved \mid positive) = 2/3 \qquad p(hated \mid negative) = 1.0 \\ p(it \mid positive) = 2/3 \qquad p(that \mid negative) = 2/3 \\ p(that \mid positive) = 2/3 \qquad P(movie \mid negative) = 1/3 \\ p(movie \mid positive) = 1/3 \qquad p(it \mid negative) = 2/3 \\ P(hated \mid positive) = 1/3 \qquad p(loved \mid negative) = 1/3
```

How would we classify: "I hated the movie"?

```
P(I \mid positive) = 1.0 P(I \mid negative) = 1.0 P(loved \mid positive) = 2/3 P(hated \mid negative) = 1.0 P(it \mid positive) = 2/3 P(hat \mid negative) = 2/3 P(hat \mid positive) = 2/3 P(movie \mid negative) = 1/3 P(hated \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(loved \mid negative) = 1/3
```

```
P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =
```

P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =

P(I | positive) = 1.0

```
P(loved | positive) = 2/3 p(hated | negative) = 1.0 p(it | positive) = 2/3 p(that | negative) = 2/3 p(that | positive) = 2/3 P(movie | negative) = 1/3 p(movie | positive) = 1/3 p(it | negative) = 2/3 P(hated | positive) = 1/3 p(loved | negative) = 1/3 P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) = P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) = P(I | negative) * P(movie | negative) * P(movi
```

 $P(I \mid negative) = 1.0$

What are these?

```
P(I | positive) = 1.0
                              P(I \mid negative) = 1.0
P(loved | positive) = 2/3 p(hated | negative) = 1.0
                              p(that | negative) = 2/3
p(it | positive) = 2/3
p(that | positive) = 2/3
                              P(movie | negative) = 1/3
p(movie|positive) = 1/3 p(it | negative) = 2/3
P(hated | positive) = 1/3 p(loved | negative) = 1/3
P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =
P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =
```

O! Is this a problem?

```
P(I \mid positive) = 1.0 P(I \mid negative) = 1.0 P(loved \mid positive) = 2/3 P(hated \mid negative) = 1.0 P(it \mid positive) = 2/3 P(hat \mid negative) = 2/3 P(movie \mid negative) = 1/3 P(movie \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(loved \mid negative) = 1/3
```

```
P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =
```

```
P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =
```

Yes. They make the entire product go to 0!

```
P(I \mid positive) = 1.0 \qquad P(I \mid negative) = 1.0 \\ P(loved \mid positive) = 2/3 \qquad p(hated \mid negative) = 1.0 \\ p(it \mid positive) = 2/3 \qquad p(that \mid negative) = 2/3 \\ p(that \mid positive) = 2/3 \qquad P(movie \mid negative) = 1/3 \\ p(movie \mid positive) = 1/3 \qquad p(it \mid negative) = 2/3 \\ P(hated \mid positive) = 1/3 \qquad p(loved \mid negative) = 1/3
```

```
P(I | positive) * P(hated | positive) * P(the | positive) * P(movie | positive) =
```

```
P(I | negative) * P(hated | negative) * P(the | negative) * P(movie | negative) =
```

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

```
P(I \mid positive) = 1.0 P(I \mid negative) = 1.0 P(loved \mid positive) = 2/3 P(hated \mid negative) = 1.0 P(it \mid positive) = 2/3 P(hat \mid negative) = 2/3 P(movie \mid negative) = 1/3 P(movie \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(hated \mid positive) = 1/3 P(loved \mid negative) = 1/3
```

```
P(I \mid positive) * P(hated \mid positive) * P(the \mid positive) * P(movie \mid positive) = 1/90
```

```
P(I \mid negative) * P(hated \mid negative) * P(the \mid negative) * P(movie \mid negative) = 1/30
```

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine

If you're curious, I'd be happy to talk to you offline