INTRODUCTION TO MACHINE LEARNING

Joseph C. Osborn

CS 51A - Spring 2020

Machine Learning is...

Machine learning is about predicting the future based on the past.
-- Hal Daume III

Machine Learning is...

Machine learning is about predicting the future based on the past.
-- Hal Daume III
past

future

Data

Data

Data

Data

Supervised learning

examples

label
label $_{1}$
label
label $_{4}$
label ${ }_{5}$
Supervised learning: given labeled examples

Supervised learning

label
label $_{1}$
label 3

label $_{4}$
label ${ }_{5}$
Supervised learning: given labeled examples

Supervised learning

predicted label

Supervised learning: learn to predict new example

Supervised learning: classification

label
apple
apple
Classification: a finite set of labels

banana
banana

Supervised learning: given labeled examples

Classification Example

Classification

Classification Applications

Optical character recognition (image-to-text)

Spam detection

Cheating detection

Medical diagnosis

Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc

Supervised learning: regression

label
-4.5
10.1

Regression: label is realvalued
3.2
4.3

Supervised learning: given labeled examples

Regression Example

Price of a used car
x : car attributes (e.g. mileage)
y : price

Regression Applications

Economics/Finance: predict the value of a stock

Epidemiology

Car/plane navigation: angle of the steering wheel, acceleration, ...

Temporal trends: weather over time

Supervised learning: ranking

label
1

Ranking: label is a ranking

4
4

2

3

Supervised learning: given labeled examples

Ranking example

Google machine learning
Web Images Maps Shopping Patents More Search tools

Given a query and a set of web pages,

rank them according

to relevance

About 130,000,000 results (0.26 seconds)
Machine learning - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Machine_learning -
Machine learning, a branch of artificial intelligence, concerns the construction and study of systems that can learn from data. For example, a machine learning Artificial intelligence - Supervised learning - List of machine learning ... - Weka Franck Dernoncourt +1'd this

CS 229: Machine Learning

cs229.stanford.edu/ -
Check out this year's awesome projects at Fall 2012 Projects. Come check out the coo new projects during the CS229 Poster Session this Thursday December ...
You've visited this page 2 times. Last visit: $8 / 14 / 13$

Machine Learning | Coursera

https://www.coursera.org/course/ml -
Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving ..
Franck Dernoncourt and 3 other people +1 'd this

Machine Learning Department - Carnegie Mellon University
www.ml.cmu.edu/
Large group with projects in robot learning, data mining for manufacturing and in multimedia databases, causal inference, and disclosure limitation.

Machine Learning - MIT OpenCourseWare
ocw.mit.edu > Courses > Electrical Engineering and Computer Science -
6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with ...

Ranking Applications

User preference, e.g. Netflix "My List" -- movie queue ranking
iTunes
flight search (search in general)

Social simulation AI

Adaptive gameplay

Unsupervised learning

Unupervised learning: given data, i.e. examples, but no labels

Unsupervised learning applications

learn clusters/groups without any label
customer segmentation (i.e. grouping)
image compression
bioinformatics: learn motifs

Break up images into visual textures

Reinforcement learning

left, right, straight, left, left, left, straight
left, straight, straight, left, right, straight, straight
left, right, straight, left, left, left, straight
left, straight, straight, left, right, straight, straight

GOOD
BAD
18.5
-3

Given a sequence of examples/states and a reward after completing that sequence, learn to predict the action to take in for an individual example/state

Reinforcement learning example

Backgammon

WIN!

LOSE!

Given sequences of moves and whether or not the player won at the end, learn to make good moves

Other learning variations

What data is available:

- Supervised, unsupervised, reinforcement learning
- semi-supervised, active learning, ...

How are we getting the data:

- online vs. offline learning

Type of model:

- generative vs. discriminative
- parametric vs. non-parametric

Representing examples

examples

What is an example? How is it represented?

Features

Features

Classification revisited

examples
red, round, leaf, 3oz, ... apple
green, round, no leaf, 4oz, ...apple
yellow, curved, no leaf, 8oz, banana

label

green, curved, no leaf, 7oz, .banana

During learning/training/induction, learn a model of what distinguishes apples and bananas based on the features

Classification revisited

The model can then classify a new example based on the features

Classification revisited

Why?

The model can then classify a new example based on the features

Classification revisited

Training data

Test set
label
red, round, leaf, 3oz, ... apple
green, round, no leaf, 4oz, ...apple
yellow, curved, no leaf, 4oz, banana
green, curved, no leaf, 5oz, .banana

Classification revisited

Training data

Test set
examples
red, round, leaf, 3oz, ... apple
green, round, no leaf, 4oz, ...apple
yellow, curved, no leaf, 40z, banana
Learning is about generalizing from the training data

models

model/

 classifierWe have many, many different options for the model

They have different characteristics and perform differently (accuracy, speed, etc.)

Probabilistic modeling


```
probabilistic
                                    model:
p(example)
```

Model the data with a probabilistic model which tells us how likely a given data example is

Probabilistic models

Probabilistic models

For each label, ask for the probability

yellow, curved, no leaf, 6oz, bana \longrightarrow

yellow, curved, no leaf, 60z, appl $\rightarrow$$\underbrace{$| probabilistic |
| :---: |
| model: |
| p(example) |}$_{\text {label }}$

Probabilistic models

Pick the label with the highest probability

Probability basics

A probability distribution gives the probabilities of all possible values of an event

For example, say we flip a coin three times. We can define the probability of the number of time the coin came up heads.

$\mathbf{P (n u m}$ heads)
$P(3)=?$
$P(2)=?$
$P(1)=?$
$P(0)=?$

Probability distributions

What are the possible outcomes of three flips (hint, there are eight of them)?

TTT
TTH
THT
THH
HTT
HTH
H H T
HHH

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=? \\
& P(2)=? \\
& P(1)=? \\
& P(0)=?
\end{aligned}
$$

Probability distributions

Assuming the coin is fair, what are our probabilities?

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=? \\
& P(2)=? \\
& P(1)=? \\
& P(0)=?
\end{aligned}
$$

Probability distributions

Assuming the coin is fair, what are our probabilities?

\[

\]

Probability distributions

Assuming the coin is fair, what are our probabilities?
$P($ num heads)
$P(3)=1 / 8$
$P(2)=?$
$P(1)=?$
$P(0)=?$

Probability distributions

Assuming the coin is fair, what are our probabilities?
$P($ num heads)
$P(3)=1 / 8$
$P(2)=3 / 8$
$P(1)=?$
$P(0)=?$

Probability distributions

Assuming the coin is fair, what are our probabilities?

Probability distribution

A probability distribution assigns probability values to all possible values

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1

$$
\begin{aligned}
& P(\text { num heads }) \\
& P(3)=1 / 8 \\
& P(2)=3 / 8 \\
& P(1)=3 / 8 \\
& P(0)=1 / 8
\end{aligned}
$$

Probability distribution

A probability distribution assigns probability values to all possible values

Probabilities are between 0 and 1, inclusive

The sum of all probabilities in a distribution must be 1

Some example probability distributions

probability of heads
(distribution options: heads, tails)
probability of passing class
(distribution options: pass, fail)
probability of rain today
(distribution options: rain or no rain)
probability of getting an ' A '
(distribution options: A, B, C, D, F)

Conditional probability distributions

Sometimes we may know extra information about the world that may change our probability distribution
$\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ captures this (read "probability of X given Y")

- Given some information (Y) what does our probability distribution look like
- Note that this is still just a normal probability distribution

Conditional probability example

$$
\begin{aligned}
& \mathbf{P}(\text { pass 51a) } \\
& P(\text { pass })=0.9 \\
& P(\text { not pass })=0.1
\end{aligned}
$$

Unconditional probability distribution

Conditional probability example

```
P(pass 51a | don't study)
P(pass) = 0.5
P(not pass) = 0.5
\[
\begin{aligned}
& \mathbf{P}(\text { pass } 51 \mathbf{a} \mid \text { do study } \\
& P(\text { pass })=0.95 \\
& P(\text { not pass })=0.05
\end{aligned}
\]
P(pass 51a | do study)
P(pass) = 0.95
P(not pass) = 0.05
```

Still probability distributions over passing 51A
P(pass 51a)
P (pass) $=0.9$
$P($ not pass) $=0.1$

Conditional probability distributions

Conditional probability example

```
P(rain in LA)
P(rain) = 0.05
P(no rain) = 0.95
```

Unconditional probability distribution

Conditional probability example

P(rain in LA| January)

$\mathbf{P}($ rain in LA $)$
$P($ rain $)=0.05$
$P($ no rain $)=0.95$

$$
\begin{aligned}
& P(\text { rain })=0.2 \\
& P(\text { no rain })=0.8
\end{aligned}
$$

Still probability distributions over passing rain in LA

$$
\begin{aligned}
& \mathbf{P}(\text { rain in LA| not January }) \\
& P(\text { pass })=0.03 \\
& P(\text { not pass })=0.97
\end{aligned}
$$

Conditional probability distributions

Joint distribution

Probability over two events: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$

Has probabilities for all possible

 combinations over the two events| 51Pass, EngPass | P(51Pass, EngPass) |
| :--- | :--- |
| true, true | .88 |
| true, false | .01 |
| false, true | .04 |
| false, false | .07 |

Joint distribution

Still a probability distribution

All questions/probabilities that we might want to ask about these two things can be calculated from the joint distribution

51Pass, EngPass	P(51Pass, EngPass)	What is $\mathrm{P}(51$ pass $=$ true $)$?
true, true	. 88	
true, false	. 01	
false, true	. 04	
false, false	. 07	

Joint distribution

There are two ways that a person can pass 51: they can do it while passing or not passing English
$P($ 51Pass $=$ true $)=P($ true, true $)+P($ true, false $)=0.89$

Relationship between distributions

$$
P(X, Y)=P(Y) * P(X \mid Y)
$$

joint distribution
conditional distribution unconditional distribution

Can think of it as describing the two events happening in two steps:
The likelihood of X and Y happening:

1. How likely it is that Y happened?
2. Given that Y happened, how likely is it that X happened?

Relationship between distributions

```
P(51Pass, EngPass) = P(EngPass) *P(51Pass |EngPass)
```

The probability of passing CS51 and English is:

1. Probability of passing English *
2. Probability of passing CS51 given that you passed English

Relationship between distributions

$P(51$ Pass, EngPass $)=P(51$ Pass $) * P($ EngPass $\mid 51$ Pass $)$

The probability of passing CS51 and English is:

1. Probability of passing CS51 *
2. Probability of passing English given that you passed CS51

Can also view it with the other event happening first

