
Lecture 14: Perceptron Learning, Backpropagation

Key Questions

• To train a perceptron, for each we first ; if , then we
.

• How do we know whether a weight contributed to an incorrect answer from a perceptron? In other words,
how do we know how much each weight contributes to the overall activation for a given example?

• When can we stop updating weights for our perceptron?

• What special trick is necessary to train multi-layer perceptrons and other "deep" neural networks?

• What is a fundamental shortcoming of single perceptrons which is overcome by stacking them in multiple
layers?

• Given the following labeled examples, can you train a neurode to approximate this function?

x0 x1 f(x0, x1)

5.0 3.69027 9.76109
5.0 3.31015 8.24062
4.0 0.55642 -1.77431
8.0 2.12101 0.48403

Notes

• The perceptron update rule:

– wi = wi + ∆wi

– ∆wi = λ ∗ (actual − predicted) ∗ xi
– (Sometimes actual is called y and predicted is called ŷ)

• Backpropagation uses the chain rule for derivatives to "blame" error on inputs from the bottom up to the
top of the network.

– This is part of why this "layer cake" model is popular

– This is also why differentiable loss and activation functions are important: we are taking partial deriva-
tives of loss with respect to weights and activations of input nodes, so all three operations (loss, activa-
tion, dot product) had better be differentiable.

• Backpropagation and gradient descent aren’t guaranteed to find totally optimal parameter values

– But in many practical problems this doesn’t matter

– See https://en.wikipedia.org/wiki/Backpropagation for more information

Your Questions

1

https://en.wikipedia.org/wiki/Backpropagation

