
CS51A—Neural Network Lab

s

http://www.xkcd.com/1425/

In this lab, we will experiment with a few simple neural networks. The idea is to obtain preliminary
answers to questions like:

– “How quickly can a network be trained?”

– “How reliable (or repeatable) is the training?”

– “How accurate is the resulting network?”

For the last half an hour of lab (or, when it seems like people have mostly wrapped up their
experiments), each pair/group will give a short 1-2 minute, informal presentation on what they
found. Although there is nothing to submit for this lab, you should keep notes and document your
results for the presentation/discussion.

Intro to the neural net package

To start with, read this section and play with a few of the examples to familiarize yourself with the
neural network package we’ll be using.

1

- Create a PyCharm project called nnlab somewhere on your computer.

- Download the following zip file and put its contents into your nnlab folder.

https://cs.pomona.edu/classes/cs51a/assignments/nn-lab-starter.zip

- Create a new Python file in your PyCharm project. Add the following import statement at
the top:

from cs51neural import *

and then save the file as nnlab.py.

Before we can proceed, we need to install a dependency : pytorch, a library for doing stuff with
computation graphs, including neural networks. This is just another module of Python code, but
you don’t have it on your computer (or in your project’s virtual environment yet). We’ll install
that now.

In PyCharm, pop open the menu item File>Settings and choose Project: nnlab>Project

Interpreter in the left hand column. Next, hit the plus button near the top right corner of the
table of packages.

2

In the window you see next, search for torch, select it from the list, and click Install Package. If
all goes well you’ll see a green box in this window stating Package ’torch’ installed successfully

and you can close this search window and the settings window.

Data

The neural network package trains on labeled training data. Each example is a tuple consisting
of the data and the label, both of which are represented as lists. For example, we saw the xor

operator in class:

data label

0 0 0

0 1 1

1 0 1

1 1 0

This data would be represented as:

xor = [([0, 0], [0]),

([0, 1], [1]),

([1, 0], [1]),

([1, 1], [0])]

I’ve written it across multiple lines to highlight the structure, but it could also have been written
as:

xor = [([0, 0], [0]), ([0, 1], [1]), ([1, 0], [1]), ([1, 1], [0])]

Training the model

To use the neural network model, you first have to create a new instance of the neural network class.
To create a new neural network you need to specify the configuration of the network. Our neural
network package implements a two-layer neural network, so you need to specify three parameters:
the number of inputs into the network (this should be the number of features/dimensions your data
has), the number of hidden nodes, and the number of output nodes (one, for most of our data).

3

Note that in PyTorch, unlike in the diagrams in our class, neurodes themselves do not have ac-
tivation functions although they do have an activation parameter learned along with the weights.
Instead, an activation layer is placed after the neurons, applying to the net activation of each node
in the previous layer. So, after a layer that computes activation, an activation function layer like
Sigmoid or ReLU is inserted before the subsequent layer of the network.

Go ahead and read the definition of init in cs51neural.py to see an example of this. On
scratch paper or the whiteboard, sketch out an example of the type of neural network that this
module produces (e.g. for NeuralNet(3, 2, 2)) and check it with a TA or Prof. Ye.

For example, to create a network with two inputs, three hidden nodes, and one output node you
would write:

nn = NeuralNet(2, 3, 1)

(Make sure you’ve imported the neural network package by either running your nnlab.py file
or typing the import statement above.)

Calling NeuralNet creates a new neural network object and we save it into a variable called nn.

Now, just like other objects that we’ve used (e.g., lists, strings, dictionaries), we can call the
methods on that object. For example, to train the model on the xor data (assuming you’ve defined
the xor variable already) we can do the following:

>>> nn.train(xor)

error 1.694987

error 0.600590

error 0.225041

error 0.082480

error 0.024184

error 0.003562

error 0.000380

error 0.000037

error 0.000004

error 0.000000

(Note that your numbers will be slightly different since the network starts off with random
weights, though it should be roughly in the same relative range.)

The default is that the program will train for 1000 iterations and it will output the training error
(i.e., the error on the data that the network is training on) after every 100 iterations. As the model
trains, you’d hopefully see the training errors generally getting smaller.

Once you’ve trained a model, you can apply it to data using the test method. For example, we
could test on the training data (though, in practice, train and test should be different, it’s a simple
way to do a sanity check on your model).

4

>>> nn.test(xor)

[([1, 1], [0], [3.457069396972656e-05]),

([1, 0], [1], [0.999976634979248]),

([0, 1], [1], [0.9998949766159058]),

([0, 0], [0], [0.00013521313667297363])]

test returns the triplets of: data, label/correct answer, model output. You can process them in a
more friendly way by unpacking the tuple:

for triple in nn.test(xor):

(input, label, prediction) = triple # unpack the triple

remember outputs are lists, so we need to get the first item from the list

print(str(input) + "\t" + str(label[0]) + "\t" + str(prediction[0]))

If you ran this, you’d see the predictions are starting to get pretty close to the real values:

[1, 1] 0 3.457069396972656e-05

[1, 0] 1 0.999976634979248

[0, 1] 1 0.9998949766159058

[0, 0] 0 0.00013521313667297363

If you want to evaluate just one input, you may do it with the evaluate method. For example, if
we wanted to see what the answer was for ([0,0]):

>>> print(nn.evaluate([0, 0]))

[0.00013521313667297363]

This is the basic functionality of the neural network class. See the Appendix at the end of this
document for more information about the different methods. In particular, take a look at the
documentation for the train method since it has a number of optional parameters that you can
specify to change how the training works. For example, to train the model for 2000 iterations we
can specify the iterations optional parameter:

>>> nn.train(xor, iterations=2000)

error 1.258905

error 0.728916

error 0.647577

error 0.598436

error 0.517484

error 0.375881

error 0.207650

error 0.084402

error 0.028093

5

error 0.008192

error 0.002118

error 0.000545

error 0.000131

error 0.000031

error 0.000008

error 0.000002

error 0.000000

error 0.000000

error 0.000000

error 0.000000

It prints out 20 errors now, one every 100 iterations. If I wanted to do this same thing, but only
print out the errors every 200 iterations:

>>> nn.train(xor, iterations=2000, print_interval=200)

error 1.310576

error 0.782371

error 0.663791

error 0.626011

error 0.331933

error 0.003130

error 0.000025

error 0.000000

error 0.000000

error 0.000000

Experiments

Now that you’re comfortable using the neural network class, let’s run a few experiments. Jot down
notes as you go for discussion later.

1. Construct a network with two hidden nodes and train it on the XOR data below. Notice that
we have complete information about the function we are trying to approximate—an unusual
situation for a neural network. How quickly do the weights/errors converge, i.e., to the point
where the difference from iteration to iteration is small? How well does the resulting network
perform? Try training several different networks to see the variation in the convergence rate.
You may also want to reduce print interval to get finer information about the changes in
the error.

6

inputs output

0 0 0

0 1 1

1 0 1

1 1 0

2. Repeat part 1 with a network with eight hidden nodes. Does the convergence go faster? Is
the resulting network a better approximation to the XOR function?

Notice that “faster” can mean “fewer iterations” or “less clock time.” A network with more
nodes will have more weights to adjust and will take more clock time for each training cycle—
but it may require fewer iterations to perform well and the total time may be shorter.

3. See what happens when you repeat part 1 using a network with just one hidden node. The
XOR function cannot be computed with a single node. Why is a network with one hidden
node equivalent to a single node?

4. Table 1 contains a sampling of voter opinions. The idea is to deduce voters party affiliations
from their views on the importance of various topics. Six voters were asked to rate the
importance of five issues on a scale from 0.0 to 1.0 and to identify themselves as Democrat
(0.0) or Republican (1.0).

Write a neural network and train it on the data in Table 1. Then try it on the samples from
Table 2 or other cases of your own creation. Can you explain the conclusions drawn by the
network?

5. Once you’ve finished these experiments, look at the three questions at the beginning of the
handout and decide which one is the most interesting to you. Spend a bit more time playing
with examples and coming up with concrete data/examples that illustrate any observations
that you have. Be prepared to share these at the end of lab.

7

budget defense crime environment social
security party

0.9 0.6 0.8 0.3 0.1 1.0

0.8 0.8 0.4 0.6 0.4 1.0

0.7 0.2 0.4 0.6 0.3 1.0

0.5 0.5 0.8 0.4 0.8 0.0

0.3 0.1 0.6 0.8 0.8 0.0

0.6 0.3 0.4 0.3 0.6 0.0

Table 1: A sampling of voter opinions. This example is taken from notes by Dave Reed of Creighton
University.

budget defense crime environment social
security party

1.0 1.0 1.0 0.1 0.1 ?

0.5 0.2 0.2 0.7 0.7 ?

0.8 0.3 0.3 0.3 0.8 ?

0.8 0.3 0.3 0.8 0.3 ?

0.9 0.8 0.8 0.3 0.6 ?

Table 2: Some test cases for the voter network.

And in a format that’s friendly for our package:

voter_train = [([0.9,0.6,0.8,0.3,0.1],[1.0]),

([0.7,0.2,0.4,0.6,0.3],[1.0]),

([0.5,0.5,0.8,0.4,0.8],[0.0]),

([0.3,0.1,0.6,0.8,0.8],[0.0]),

([0.6,0.3,0.4,0.3,0.6],[0.0])]

8

Appendix: The Neural Network Class

The software we’re playing with represents a neural network as an object of the NeuralNet class.
We’ve already seen instances of this, for example, lists are a class of objects.

The main difference between a list object and our neural network object is that there is no special
way for constructing neural network objects (to create lists we use the square brackets, []). Instead,
there is a special function called a constructor that takes some number of arguments (in our case,
three) and creates a neural network object. Once you have that object, you can call methods on it
just like you would any other object.

In the following summary, the neural network object is named nn. You may, of course, give your
networks any name you like.

nn = NeuralNet(num input, num hidden, num output) this calls the constructor and creates a
network with the specified number of nodes in each layer. The initial weights are random val-
ues between −2.0 and 2.0. Notice that all of the other methods below are called on a neural
network object that has been created. You may also choose to create the network with a dif-
ferent activation function by e.g. nn = NeuralNet(num input, num hidden, num output,

activation=’relu’). Allowed values are ’relu’, ’tanh’, and ’sigmoid’.

nn.evaluate(input) returns the output of the neural network when it is presented with the given
input. Remember that the input and output are lists.

nn.train(training data) carries out a training cycle. As specified earlier, the training data is a
list of input-output pairs. There are four optional arguments to the train function:

learning rate defaults to 0.5.

iterations defaults to 1000. It specifies the number of passes over the training data.

print interval defaults to 100. The value of the error is displayed after print interval

passes over the data; we hope to see the value decreasing. Set the value to 0 if you do
not want to see the error values.

You may specify some, or all, of the optional parameters by name in the following format.

nn.train(training_data,

learning_rate=0.05,

iterations=100,

print_interval=5)

nn.test(testing data) evaluates the network on a list of examples. As mentioned above, the
testing data is presented in the same format as the training data. The result is a list of triples
which can be used in further evaluation.

nn.get IH weights() returns a list of two lists representing the weights between the input and
hidden layers. If there are t input nodes and u hidden nodes, the result will be first a list
containing u lists of length t, then a list of u activation parameters.

9

nn.get HO weights() returns a list of two lists representing the weights between the hidden and
output layers. If there are u hidden nodes and v output nodes, the result will be first a list
containing v lists of length u, then a list of v activation parameters.

10

