

NAÏVE BAYES

David Kauchak, Joseph C. Osborn
CS 51A - Fall 2019

Relationship between distributions

$$P(X, Y) = P(Y) * P(X|Y)$$

joint distribution

unconditional distribution

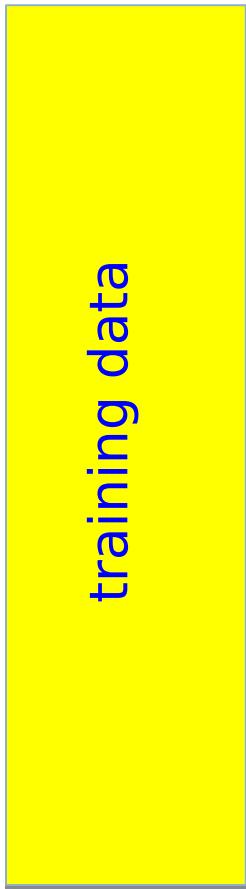
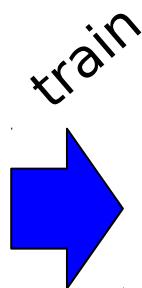
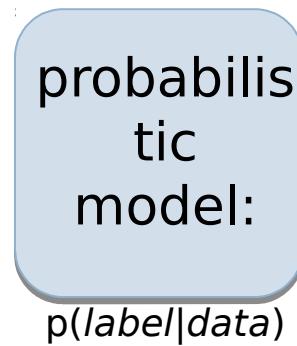
conditional distribution

Can think of it as describing the two events happening in two steps:

The likelihood of X and Y happening:

1. How likely it is that Y happened?
2. Given that Y happened, how likely is it that X happened?

Back to probabilistic modeling



Build a model of the conditional distribution:

$$P(\text{label} \mid \text{data})$$

How likely is a label given the data

Back to probabilistic models

For each label, calculate the probability of the label given the data

yellow, curved, no leaf, 6oz, banana

probabilistic model:
 $p(\text{label}|\text{data})$

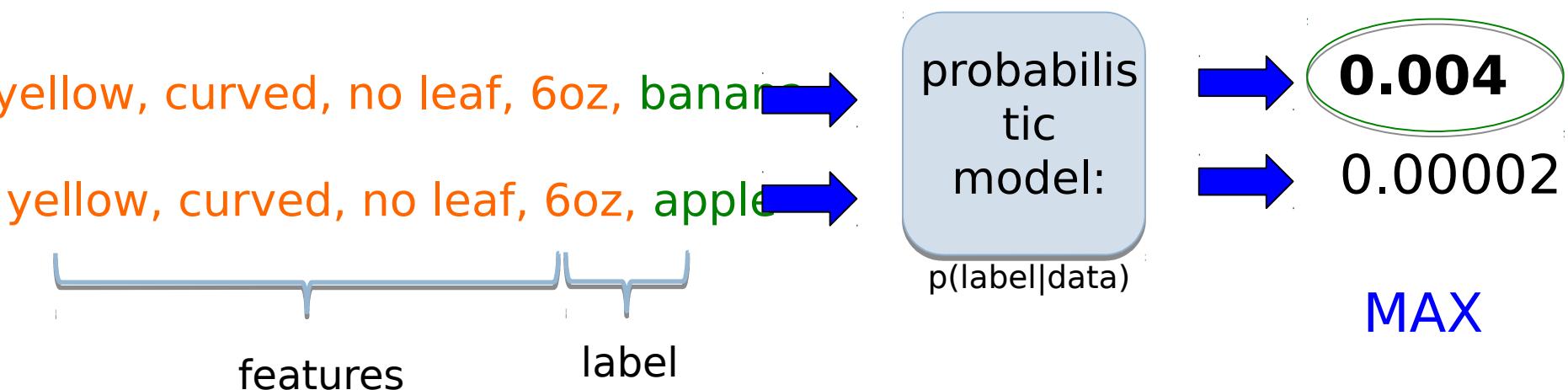
yellow, curved, no leaf, 6oz, apple

features

label

Back to probabilistic models

Pick the label with the highest probability



Naïve Bayes model

Two parallel ways of breaking down the joint distribution

$$P(data, label) = P(label) * P(data|label)$$

$$P(data, label) = P(data) * P(label|data)$$

$$P(label) * P(data|label) = P(data) * P(label|data)$$

What is $P(label|data)$?

Naïve Bayes

$$P(label) * P(data|label) = P(data) * P(label|data)$$

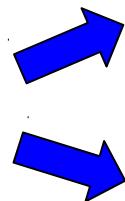
$$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$$

(This is called Bayes' rule!)

Naïve Bayes

$$P(label|data) = \frac{P(label) * P(data|label)}{P(data)}$$

probabilistic model:
 $p(label|data)$



$$\frac{P(\text{positive}) * P(data|\text{positive})}{P(data)}$$

MAX

$$\frac{P(\text{negative}) * P(data|\text{negative})}{P(data)}$$

One observation

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{data})} \quad \text{MAX}$$

$$\frac{P(\text{negative}) * P(\text{data}|\text{negative})}{P(\text{data})}$$

For picking the largest $P(\text{data})$ doesn't matter!

One observation

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{negative}) * P(\text{data}|\text{negative})} \text{ MAX}$$

For picking the largest $P(\text{data})$ doesn't matter!

A simplifying assumption (for this class)

$$\frac{P(\text{positive}) * P(\text{data}|\text{positive})}{P(\text{negative}) * P(\text{data}|\text{negative})} \text{ MAX}$$

If we assume $P(\text{positive}) = P(\text{negative})$ then:

$$\frac{P(\text{data}|\text{positive})}{P(\text{data}|\text{negative})} \text{ MAX}$$

$P(\text{data}|\text{label})$

$$P(\text{data}|\text{label}) = P(f_1, f_2, \dots, f_n|\text{label})$$

$$\begin{aligned} &\approx P(f_1|\text{label}) * \\ &P(f_2|\text{label}) * \\ &\dots \\ &P(f_n|\text{label}) \end{aligned}$$

This is generally not true!

However..., it makes our life easier.

This is why the model is called **Naïve** Bayes

Naïve Bayes

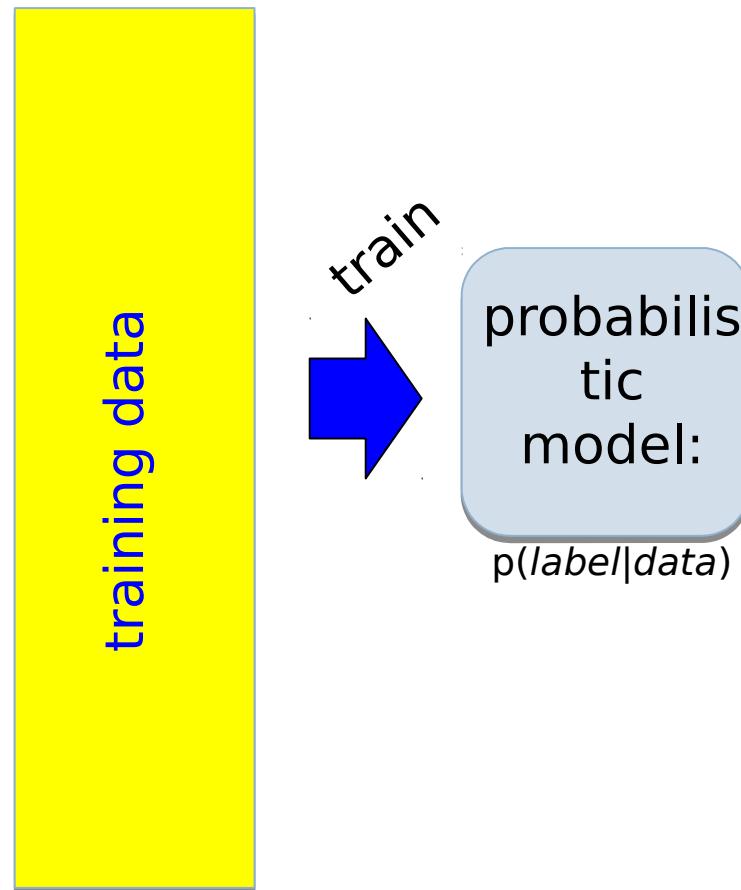
$$P(f_1|\text{positive}) * P(f_2|\text{positive}) * \dots * P(f_n|\text{positive})$$

$$P(f_1|\text{negative}) * P(f_2|\text{negative}) * \dots * P(f_n|\text{negative})$$

MAX

Where do these come from?

Training Naïve Bayes



An aside: $P(\text{heads})$

What is the $P(\text{heads})$ on a fair coin?

0.5

What if you didn't know that, but had a coin to experiment with?

$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

Try it out...

P(feature|label)

$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in the positive label?

$$P(\text{feature|positive}) = ?$$

P(feature|label)

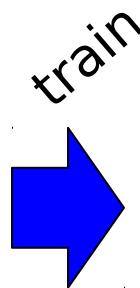
$$P(\text{heads}) = \frac{\text{number of times heads came up}}{\text{total number of coin tosses}}$$

Can we do the same thing here? What is the probability of a feature given positive, i.e. the probability of a feature occurring in the positive label?

$$P(\text{feature}|\text{positive}) = \frac{\text{number of positive examples with that feature}}{\text{total number of positive examples}}$$

Training Naïve Bayes

training data



probabilis
tic
model:
 $p(\text{label}|\text{data})$

1. Count how many examples have each label
2. For all examples with a particular label, count how many times each feature occurs
3. Calculate the conditional probabilities of each feature for all labels:

$$P(\text{feature}|\text{label}) = \frac{\text{number of ``label'' examples with that feature}}{\text{total number of examples with that label}}$$

Classifying with Naïve Bayes

For each label, calculate the product of $p(\text{feature}|\text{label})$ for each label

yellow, curved, no leaf, 6oz

$P(\text{yellow}|\text{banana}) * \dots * P(6\text{oz}|\text{banana})$

$P(\text{yellow}|\text{apple}) * \dots * P(6\text{oz}|\text{apple})$

MAX

Naïve Bayes Text Classification

Positive

I loved it

I loved that movie

I hated that I loved it

Negative

I hated it

I hated that movie

I loved that I hated it

Given examples of text in different categories, learn to predict the category of new examples

Sentiment classification: given positive/negative examples of text (sentences), learn to predict whether new text is positive/negative

Text classification training

Positive

I loved it

I loved that movie

I hated that **I** loved it

Negative

I hated it

I hated that movie

I loved that **I** hated it

We'll assume words just occur once in any given sentence

Text classification training

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

We'll assume words just occur once in any given sentence

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

For each word and each label, learn:

$p(\text{word} \mid \text{label})$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$P(I | \text{positive}) = ?$

$$P(\text{word}|\text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 3/3 = 1.0$$

$$P(\text{word}|\text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = ?$$

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{hated} \mid \text{positive}) = ?$$

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

...

$$P(I \mid \text{negative}) = ?$$

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

...

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

...

$$P(I \mid \text{negative}) = 1.0$$

$$P(\text{movie} \mid \text{negative}) = ?$$

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Training the model

Positive

I loved it

I loved that movie

I hated that loved it

Negative

I hated it

I hated that movie

I loved that hated it

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 3/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

...

$$P(I \mid \text{negative}) = 1.0$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

...

$$P(\text{word} \mid \text{label}) = \frac{\text{number of times word occurred in "label" examples}}{\text{total number of examples with that label}}$$

Classifying

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 1.0$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

Notice that each of these is its own probability distribution

P(love~~d~~ | positive)

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$P(\text{no loved} \mid \text{positive}) = 1/3$$

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

How would we classify: “I hated movie”?

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) = 1.0 * 1/3 * 1/3 = 1/9$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) = 1.0 * 1.0 * 1/3 = 1/3$$

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

How would we classify: “I hated the movie”?

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

What are these?

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

0! Is this a problem?

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

Yes. They make the entire product go to 0!

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) =$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) =$$

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

Trained model

$$P(I \mid \text{positive}) = 1.0$$

$$P(\text{loved} \mid \text{positive}) = 2/3$$

$$p(\text{it} \mid \text{positive}) = 2/3$$

$$p(\text{that} \mid \text{positive}) = 2/3$$

$$p(\text{movie} \mid \text{positive}) = 1/3$$

$$P(\text{hated} \mid \text{positive}) = 1/3$$

$$P(I \mid \text{negative}) = 1.0$$

$$p(\text{hated} \mid \text{negative}) = 1.0$$

$$p(\text{that} \mid \text{negative}) = 2/3$$

$$P(\text{movie} \mid \text{negative}) = 1/3$$

$$p(\text{it} \mid \text{negative}) = 2/3$$

$$p(\text{loved} \mid \text{negative}) = 1/3$$

$$P(I \mid \text{positive}) * P(\text{hated} \mid \text{positive}) * P(\text{the} \mid \text{positive}) * P(\text{movie} \mid \text{positive}) = 1/90$$

$$P(I \mid \text{negative}) * P(\text{hated} \mid \text{negative}) * P(\text{the} \mid \text{negative}) * P(\text{movie} \mid \text{negative}) = 1/30$$

Our solution: assume any unseen word has a small, fixed probability, e.g. in this example 1/10

Full disclaimer

I've fudged a few things on the Naïve Bayes model for simplicity

Our approach is very close, but it takes a few liberties that aren't technically correct, but it will work just fine ↪

If you're curious, I'd be happy to talk to you offline