
Dictionaries



Outline

Dictionaries are Not Exactly Sequences

Dictionaries are Mutable (!)

Dicts are Objects

Quiz

Assignment 6: Review Sentiment Analysis



Dictionaries

▶ This week we’ll work with a new type: dict.

▶ A Python dict, or “dictionary”, is a kind of collection type
▶ Where lists map numerical indices to values

▶ And indices are dense. . .

▶ Dictionaries map arbitrary keys to values
▶ And keys are sparse



Creating Dictionaries

We have two ways to create a dict:

▶ d = dict() for an empty dict

▶ d = {"a": 1, "b": 2} for a dict literal.



Indexing Dictionaries

Indexing is implemented for dicts, like for lists:

d = dict()
d["a"] = 1
d["b"] = 2
d["c"] = d["a"] + d["b"]



Iterating Through Dictionaries

Also like lists, we can iterate through dictionaries; unlike lists,
this gives us a series of indexes.

d = {1:"good morning", 3:"good afternoon", 5:"good night"}
for key in d:

num = key + 2
print(key, d[key][0:num])

What will this print?



Iterating Through Keys and Values

We could rewrite the preceding example:

d = {1:"good morning", 3:"good afternoon", 5:"good night"}
for key, value in d.items():

num = key + 2
print(key, value[0:num])



Exercise: Menu Prices

Imagine a dictionary menu which maps food names (“veggie
burger”, “gazpacho”, etc) to their prices in dollars.
Write a function compute_total(menu, items) where
items is a list of food names; the function should return the
total cost of the given items according to the menu.



Exercise: Priciest Item

Write a function most_expensive(menu) that returns the
most expensive item on the menu.



Keys and Values

Sometimes we only want to work with the keys or the values
of a dictionary, and don’t need to iterate through both at
once. Dict’s methods can help:

#list() converts any iterator to a list
alphabetized = list(menu.keys())
alphabetized.sort()



Dictionaries are Mutable

▶ Dictionaries, like lists, are mutable

▶ Be careful that your functions don’t change their inputs
by mistake

▶ This is a bug minefield



Revenge of the Variables

What will the values of x and y be after this code executes?

x = {"a":1, "b":2}
y = x
y["c"] = 3



Aliasing & Copying

▶ Aliasing is back with a vengeance

▶ Remember: Assignment is still the only thing that can
change what a variable refers to

▶ BUT! Lists and dictionaries have internal mutability, so
their contents can change.

▶ In the example above, x and y end up pointing to the
same dict.



Copying

We can avoid aliasing with lists by slicing. But it turns out
both lists and dicts have a copy method:

x = {"a":1, "b":2}
y = x.copy() # !!
y["c"] = 3

In this case, y points to a copy of x, while x still points to its
original contents.



Hygiene

When a function receives a dict as a parameter, it should
document whether:

1. It stores a reference (variable) pointing to this dict

2. It may modify this dict

3. The caller is allowed to use the dict anymore afterwards

When a function returns a dict, it should document whether:

1. The caller may modify the dict

2. The dict may be modified or aliased by some other code

When in doubt, arguments should be copied to be stored and
return values that are stored elsewhere should be copied before
returning them.



del

We can remove an element from a dictionary using the del
statement:

x = {"apple": "pie", "banana":"pie", "chocolate":"ice cream"}
del x["banana"]



in

You can use in to check if a key is present in a dictionary:

x = {"apple":"pie", "chocolate":"ice cream"}
if "banana" in x:

print("found banana")



Dicts are Objects

Like strings and lists, dictionaries have a suite of methods to
manipulate them; here are just a couple:
▶ dict.get(key, default=None)

▶ Obtains key from dict, returning default if the key is
absent (default is optional)

▶ dict.keys(), dict.values() return iterators



Exercise

Write a function dict_subset(d1, d2) which returns True if
all of d1’s keys are defined in d2.



One more type: set

dict has the nice property that every key has at most one
value; we could imagine using them to track e.g. which words
have appeared in a document using a dict from words (strings)
to bools. But then, if a value is False or if it’s absent mean
basically the same thing.
A mathematical set is a collection of values where each
possible value appears at most once. Python has a set type
as well which is similar in spirit to dict, but you use the add
method to push items into the set and remove to get rid of an
item. It can be nicer to work with than a dict if you really just
care about whether a key is present.



Quiz



Assignment 6

We’ll talk about the Naive Bayes classifier for this assignment
next time, but it’s actually ok to start on the assignment
today—you have all the technical skill you need for it.
Just remember the “test as you go” idea from last week. You’ll
want to use that concept here as well. The writeup encourages
you to build your code a piece at a time; and each piece can
be tested independently of the others.


	Dictionaries are Not Exactly Sequences
	Dictionaries are Mutable (!)
	Dicts are Objects
	Quiz
	Assignment 6: Review Sentiment Analysis

