
Building and Breaking Down Lists

Outline

Accumulating a Result

Mapping a Computation Over a List

Filtering a List by a Computation

Working on Lists in Parallel

Quiz

Pattern: Accumulating a Result

We often iterate over a full list, doing a computation over each
element in turn.

lst_sum = 0

for elt in [1,2,3,4,5]:

lst_sum += elt

What does the loop above do?

The General Pattern

initialize aggregator variable(s)

var1 = init_var1()

for elt in lst:

aggregate elt into aggregator

var1 = process(var1, elt)

We sometimes call this a left fold, since it processes elements from
the left of the list to the right.

Exercise: Compute the Maximum

Using the left fold idea, compute the greatest element of the list
lst. You can assume the list only contains non-negative numbers,
for simplicity.

Folding with an Index

We saw enumerate last time. Our find_greatest could be
implemented to return the index of the greatest element like so:

def find_greatest_index(lst):

greatest = -1

index = None

for i, elt in enumerate(lst):

if elt > greatest:

index = i

greatest = elt

return index

Exercise: Find an Element

Using the left fold idea and enumerate, write a function that takes
a list and a number and finds the index of the last occurrence of
the number in the list, returning None if it’s not found.

Going Backwards

We have seen enumerate, but there are other iterator adapters as
well. We can use reversed to simplify that last function and avoid
the need to accumulate anything:

def find_last_occurrence(lst, num):

for i, elt in reversed(enumerate(lst)):

if elt == num:

return i

return None

Right Folds

If we have a left fold, it stands to reason there should be a right
fold that starts from the last element and goes backwards. We can
use reversed—right folds often show up when implementing
programming languages!

Example: Stack-Based Calculator

def calculator(instructions):

stack = []

for inst in reversed(instructions):

if inst == "+":

stack.append(stack.pop() + stack.pop())

else:

stack.append(inst)

return stack[0]

(9 + 12) + (2 + 5)

calculator([’+’, ’+’, 12, 9, ’+’, 5, 2])

Folds are Very Powerful

As the last example shows, folds are very flexible. We can
aggregate into numbers, lists, strings, or any other type!
We can specialize folds into two common cases; for now it’s
important to recognize these patterns, but in the future you will see
tools like filter and map to avoid the need for the loop altogether.

Folds

Folds take in a list, apply some operation over the elements from
an initial value, and return a new value. In today’s class we’ll
mostly be discussing functions that create and return new lists,
rather than modifying the original input list in-place.

Mapping a Computation Over a List

We often want to transform a list of things by transforming each
thing individually and in order:

def double_all(lst):

output = []

for elt in lst:

output.append(elt*2)

return output

Mapping

In mathematical terms, we are mapping the doubling operation over
lst.
The output list will always have the same number of elements as
the input, in the same corresponding order.
Many natural uses of map occur in programming: uppercasing or
lowercasing a string, gathering email addresses of users, etc.

Mapping Recipe

The general mapping recipe is a special kind of fold:

def mapping_fn(lst):

output = []

for elt in lst:

output.append(f(elt))

return output

Exercise

Write a mapping function that squares each number in a list.
Write a mapping function that replaces space characters in a string
with dashes (-).

Filtering a List by a Computation

Another special case of folding is filtering: accepting only those
elements which pass some test.

def keep_fives(lst):

output = []

for elt in lst:

if elt == 5:

output.append(elt)

return output

Filtering Recipe

def filter_fn(lst):

output = []

for elt in lst:

if test(elt):

output.append(elt)

return output

Exercise

Write a filtering function that removes even numbers from a list of
numbers.
Write a filtering function that removes the odd-numbered indices
from a list (use enumerate).

Filtering and Mapping

We can also combine mapping and filtering. The following
composes map and filter:

def keep_and_double_threes(lst):

output = []

for elt in lst:

filter step

if elt % 3 == 0:

map step

output.append(elt * 2)

return output

Exercise: How would the code be different if we wanted to first
double elements and keep the ones that became multiples of 3? In
other words, to compose filter and map?

Working on Lists in Parallel

We have already seen exercises where we work on elements of two
lists side by side:

lst1 = [1,2,3]

lst2 = [4,5,6]

for i in range(len(lst1)):

lst1[i] += lst2[i]

Working on Lists in Parallel

We want to avoid direct indexing as much as possible because it’s
easy to introduce bugs. enumerate isn’t super useful here since we
still do need to access the second list. We’ll wrap up today by
introducing zip:

lst1 = [1,2,3]

lst2 = [4,5,6]

output = []

for elt1, elt2 in zip(lst1, lst2):

output.append(elt1+elt2)

zip

zip is a bit like enumerate, but instead of producing a sequence of
numbers and a sequence of elements, it produces a sequence of
pairs of elements drawn from each of the input sequences.

Exercise

Use zip to implement a function get_fullnames(firstnames,

lastnames), where firstnames and lastnames are each lists of
strings.
The output should be a list of full names; e.g.
get_fullnames(["Alice", "Bob"], ["Adams",

"Bobsleigh"]) should produce ["Alice Adams", "Bob

Bobsleigh"].

Quiz

	Accumulating a Result
	Mapping a Computation Over a List
	Filtering a List by a Computation
	Working on Lists in Parallel
	Quiz

