
Lists

Outline

Lists are Sequences

Lists are Mutable (!)

Lists are Objects

Quiz

Assignment 5: Movie Hangman Game

Lists

▶ This week we’ll work with a new type: list.
▶ A list, like a tuple, is a sequence of objects

▶ Unlike a tuple, a list can grow or shrink
▶ We’ll see more differences soon

▶ We write lists with square braces:
▶ [1, 2, 3]
▶ []
▶ ["hi", 2, (4, 6)]

Creating Lists

▶ Besides square braces (literal lists). . .
▶ We can use list() to turn things into lists

▶ list((1, 2)) will create the list [1,2] out of the tuple
(1,2)

▶ list("hi") will create the list [’h’,’i’]
▶ list(47) is an error

Lists as Sequences

Like strings, we can use square braces or slicing to access
elements of a list:

lst = [1, 2, 3]
three = lst[2]
one_two = lst[0:2]

We can also write len(lst) to get its length.

Iterating Through Lists

Also like strings, we can iterate through lists with for ...
in ...:

lst = [1, 5, 25, 125]
sum = 0
for number in lst:

sum += number

Exercise: List of Strings

Write a function net_len(lst) that takes a list of strings
and returns the sum of the lengths of the strings in the list.

Iterating with an Index

We often want to iterate elements and also keep track of an
index. But these options can be annoying and error-prone:

which = 0
for elt in lst:

which += 1
print(f"Element {which} = {elt}")

for which in range(len(lst)):
elt = lst[which]
print(f"Element {which} = {elt}")

enumerate to the Rescue

Instead, let’s use the built-in function enumerate() that
works on any sequence, and throw in some pattern matching
for extra niceness:

for which, elt in enumerate(lst):
print(f"Element {which} = {elt}")

When you need the index and the element, I’m a big fan of
enumerate vs range-loops or tracking an extra variable.

Revenge of the Variables

What will the values of x and y be after this code executes?

x = 5
y = x + 1
x = 10

Assignment

Remember: Assignment computes the value on the right and
stores it in the location on the left.

Revenge of the Variables

What will the values of x and y be after this code executes?

x = [0]
y = x
y[0] = 10

Aliasing

When we assign x’s value to y, the value is a list! That list is
an object with a unique identity—it is also a mutable object.
When two variables refer to the same object, we say one is an
alias of the other, or that the object is aliased (an alias in
English is like an “AKA” name).
Aliasing on its own is fine, but aliasing of a mutable object can
cause subtle bugs.

Aliasing

Compare:

x = [0]
y = x
y[0] = 10

x = [0]
y = x[:] # slice containing the whole list
y[0] = 10

Aliasing

Except for files, lists are the first mutable object we’ve seen so
far. But where a file typically doesn’t get passed around
between functions much, lists are used as a data structure all
over the place.

Copying

Taking a slice of a list creates a new list, so if you don’t want
the list to change out from under you consider copying it:

def start_solitaire(cards):
deck = cards[:]
shuffle_deck(deck)
return deal(deck)

Hygiene

When a function receives a list as a parameter, it should
document whether:

1. It stores a reference (variable) pointing to this list

2. It may modify this list

3. The caller is allowed to use the list anymore afterwards

When a function returns a list, it should document whether:

1. The caller may modify the list

2. The list may be modified or aliased by some other code

When in doubt, arguments should be copied to be stored and
return values should be copied before returning them.

del

We can remove an element from a list using the del
statement:

lst = ["a","b","c"]
del lst[0]
lst is ["b", "c"]

Lists are Objects

Like strings, lists have methods; most of these will modify the
list in place.

append

We can use append to add an object to the end of a list:

lst = []
lst.append("this")
lst.append("is")
lst.append("my")
lst.append("list")

What does lst contain now?

insert

insert is like append but works at any position in the list,
not just the end:

lst = []
lst.append("this")
lst.insert(0, "is")
lst.insert(len(lst), "my")
lst.append("list")

What does lst contain now?

pop

The inverse of append is pop, which takes an element out of
the list and returns it:

lst = [1, 2, 3]
three = lst.pop(2)
lst.append(4)
one = lst.pop(0)

What does lst contain now?

index

Like find for string, we can use lst.index(elt) to find the
first occurrence of elt in the list lst.

Modifying the Whole List

We can modify a list in a variety of ways:

▶ lst.sort() will rearrange the elements of lst to be in
ascending order

▶ lst.reverse() will reverse the order of the elements in
the list.

▶ lst.clear() will empty out all the items of the list

Quiz

Assignment 5

Testing As You Go

If you’re working on movie.py. . .

▶ Make a file test_movie.py

▶ from movie import *

▶ Write an assert about a function in movie.py
▶ Then write the code in movie.py that makes it pass

Do the same for hangman.py when you get there!

Testing As You Go

This assignment will be really hard if you try to test it all at
the end.
Write tests as you go—writing the test first will help you be
sure you understand the inputs and outputs of each function.
If you don’t know how to write the test, you don’t really know
what the function ought to do.

	Lists are Sequences
	Lists are Mutable (!)
	Lists are Objects
	Quiz
	Assignment 5: Movie Hangman Game

