Files and Errors

Outline

Reading Files

Writing Files

Errors

Quiz

About Files

» What is a file?
» A chunk of data stored on the hard disk
» Why do we need files?

» Disks persist state across program runs

» When a program is running, all its variables are in RAM
» RAM is faster, but doesn't persist through restarts

» Or when the program exits

About Files and Paths

» Files are arranged in a tree of folders

» On my computer, e.g., this slideshow is at this path:

» /home/jcoa2018/CS050/week4/lecd-2.slides.pdf

» “The file lec4-2.slides.pdf in the folder week4 of the
folder 050 ..."

» The topmost folder is called “root” and written /
» On Windows: C:\ or whatever disk it's on

» Paths can be complete (absolute) paths from the root. . .
» Or incomplete (relative) paths with respect to “the

current directory”

» Typically “where the program is running from”

Reading Files

We use the open(filename, mode) function to open files in
Python.
We'll talk about the read mode "r" first:

file = open("assignmentl.py", "r")

If we have a file open in read mode, we can read to it but not
write to it.

Quick question: Is this path absolute or relative?

Files are lterable

» Like strings and tuples, files support for ... in file

» Other sequence operations like + and x in file don't

work though

file = open("assignmentl.py", "r")
for line in file:

print(line)

line will include the ending “newline” or “carriage return”
character, so you may want to use line.rstrip() to remove
that.

Caveat

File objects, unlike strings, have a current position. So this

code won't do what you expect:

file = open("assignmentl.py", "r")
print ("Print it once...")
for line in file:

print(line)

print ("Print it again...")
for line in file:

print(line)

The first loop uses up the file.

File Read Methods

We have four key methods for reading files:
file.read()

>

» file.readline()

» file.seek(position)
>

file.tell()

Read and Readline

» read() reads as much of the file as possible into a string,
which it returns.
» You can give a parameter to read if you only want a few
characters: file.read(8) will read at most 8

characters.

» readline() is a convenience over read that reads up to
a newline character ("\n").

» Calls to these functions push the current position forward
by the number of characters read.

Exercise

Imagine file.txt is as follows:

this is my cool file
it has more lines than we’ll read

it is a haiku

What will the values of first_five, rest_of_line, and
next_line be after this code executes? What will the position
of the file be (you don't need to count the character number

for this exercise, just be able to point to where it ends up)?

file = open("file.txt", "r")
first_five = file.read(b)
rest_of_line = file.readline()

next_line = file.readline()

Exercise: Seek and Tell

We can move the file cursor without reading anything:

file = open("file.txt", "r")
first_five = file.read(5)
file.seek(0)

first_line = file.readline()
pos = file.tell()

print (f"ended up at {pos}")

What will the contents of first_line be?
Where will the file cursor be?

Closing Files

There's some coordination between your program and

operating system here.
» Which files are open?
» Where are we in each file?

» What if another program modifies or deletes the file while
we read it?

» Etc

Closing Files

This coordination has some overhead, so operating systems
limit the number of open files and track which programs are
reading which files.

When you are done with a file, close it:

file = open("test.txt", "r")
do some reads...
file.close()

can’t read file anymore, all done!

Not closing a file properly is a bug, so remember to close it!

Remember to Close Files

» Anything that you need to remember to do is a bug
waiting to happen.
» Also: If you open a file in a function, you should close it
before returning
» Also also: If your function has an error and exits, you still
need to close the file!
» It's hard to keep track of this stuff

» One virtue for programmers is laziness:

» Offload work for later
» Do as little as possible
» Automate, don't remember

Automatic Closing

Many scarce resources like files exist in programming: network
or database connections, large allocations of memory, etc.
Python gives us a tool for such cases.

with open("file.txt", "r") as file:
first_line = file.readline()
for line in file:
print(line)
file closes automatically here
print("All done!")

Python files and other scarce resources provide “context
managers’ for use with the with statement. In this class we'll
really only use with for files.

File Formats

» What is a file format?

> A set of rules we expect when reading the file

> Sometimes, a special file extension in the path (e.g., .py)
» Text vs binary

> We'll work with text files only in this class
» But files can contain raw binary data too

» The bytes type can be helpful here
» Common formats: .html, .pdf, .txt, .docx, .png, ...
> text, binary, text, text (XML), binary, ...

File Modes

We've seen how to read files already—we pass "r" as the
second argument of open().

If we want to write a file, we use "w" instead.

Text Encodings

» Before we proceed: even text files are binary datal
> Python uses a text encoding scheme to convert between

characters and bytes.
» By default it uses your “system encoding”

» It's a good idea to be explicit about the encoding used.

» In almost all cases we want UTF-8

file = open("test.txt", "r", encoding="utf-8")

New syntax alert! We call encoding a keyword argument.

Writing Text

The primary method we need for writing text files is write ().

In fact, we can't call read() on a file open for writing.

the open call actually **erases** output.txt!

with open("file.txt", "w", encoding="utf-8") as file:
file.write("this is my cool file\n")
note the ’\n’s here
file.write("it is also a haiku\n")

file.write("poetry is fun")

write(), like read (), moves the file position.

Reading and Writing

What if we just want to replace a single line of the file?

We could read the whole thing with one open, then write it
out with a second open—but that sounds annoying.

Instead, we can use the "r+" mode to open a file we can both
read from and write to.

Be careful with this though—if your new line is shorter than
the old line, some of the old line will remain; and if it's longer,
it will run over into the following line!

Finally, if you have made the overall file shorter in the process
of reading and writing, you'll want to use
file.truncate(length) to eliminate text beyond the new
“end” of the file.

Errors

Python programs can go wrong in a bunch of ways:
> 1 + ’hi’
» def f(x):
return x + X
£0O
» Writing to a read-only file
» Reading from a closed file

» Opening a file that doesn't exist

Exceptions
Python errors indicate exceptional circumstances—errors that
Python can't resolve on its own.
Sometimes, howver, we as programmers have enough
information to do something useful with the error. We can use

the try. . .except syntax for this.

try:
with open("file.txt", "r") as file:
for line in file:
print(line)
except:
print("Couldn’t open file!")

Exceptions

Sometimes we need to clean up whether or not an error

occurred:

file = open("file.txt", "r")
try:
do_something with(file)
except:
print("Failed to do something with file")
finally:
file.close()

This is more or less how the with statement works.

Exception Types

There are many different kinds of exceptions that can occur,
and we can match on the type of error to decide how to
handle it:

x = "a string"
try:
if x > 50:
y = "hello"
print (y)

except NameError:
print("Variable y was not defined")
except:

print("Some other issue")

Quiz

	Reading Files
	Writing Files
	Errors
	Quiz

