
Loops

Outline

Loops Repeat Computation

Looping Over Ranges

Quiz

Assignment 3: Credit Cards

Aesthetic: Eliminating Redundancy

We have seen code like this before:

player1 = get_player()
greet_player(player1)
player2 = get_player()
greet_player(player1)
player3 = get_player()
greet_player(player3)

What is the problem with this code?

Unbounded Iteration

What if we don’t know the number of players in advance?

num_players = int(input("Players? "))
if num_players > 0:

player1 = get_player()
if num_players > 1:

player2 = get_player()
if num_players > 2:

player2 = get_player()
... awkward, tricky, bad

Unbounded Programs

Think back to our calculator from last week—isn’t it annoying
to start it over from the console every time?
Some programs should never end, or shouldn’t end until the
user says so!

The while loop

Enter the while loop:

input_str = input("Next move? ")
while input_str != "quit":

... play a round of the game ...
input_str = input("Next move? ")

while again:

times = 0
while num > 0:

num = (num + 1) // 2
times += 1

print(f"{times} steps until zero")

Looping-until

▶ A while loop is made of two parts:
▶ The condition is checked first of all, like if
▶ If the condition is true, the body is executed

▶ Otherwise we skip past the end of the loop

▶ After the body executes, control returns to the condition

Exercise

▶ How many times will the body of the loop execute?

▶ What will the value of x be at the end of each iteration of
this loop?

▶ What will the value of x be when the loop has finished?

x = 0
while x + 17 < 30:

x += 4

Exercise

This code is out of order and not indented properly. Reorder it
to make it correctly compute the product of the first ten
numbers starting from 1.

num += 1
num = 1
while num < 10:
product *= num
product = num

Exercise

Write a while loop that finds the first common multiple of
two numbers a and b.
Hint: Define two variables a_mult and b_mult, initialized to a
and b. a_mult will always be a multiple of a; likewise for
b_mult. What does it mean if those two become equal?

The for loop

Python has a second type of loop: the for loop.

for i in range(5):
print(i)

Looping-over

▶ for loops always try iterate a specific number of times.

▶ We are looping over, rather than looping until.
▶ Instead of a condition, for loops:

▶ Define a loop variable (i). . .
▶ a loop iterator (range(5)). . .
▶ and a body

Exercise

▶ How many times will the body of the loop execute?

▶ What will the value of x be at the end of each iteration of
this loop?

▶ What will the value of x be when the loop has finished?

x = 0
for y in range(5):

x += y

range

range is the only kind of iterator we’ll discuss for now.
range can get pretty fancy, specifying start, end, and step-size:

for i in range(5): print(i)
for i in range(1, 5): print(i)
for i in range(0, 7, 2): print(i)
for i in range(7, 0, 2): print(i)
for i in range(7, 0, -2): print(i)

Early exit

▶ Loops like for or while usually end naturally
▶ When the iterator is empty
▶ When the condition becomes false

▶ But if we return from the function or break out of the
loop. . .
▶ The loop will end immediately

Exercise

▶ How many times will step be printed?

▶ What value will be printed for x at the end?

x = 10
for i in range(5):

x += i
if x > 15:

break
print("step")

print(x)

Exercise

▶ How many times will step be printed?

▶ What value will be printed for x at the end?

▶ What does this tell us about how range works?

x = 5
for i in range(x):

x += i
print("step")

print(x)

Quiz

Truncating vs Float Division

▶ Remember the difference between / and //:
▶ 5 / 2 is 2.5, but 5 // 2 is 2

▶ This will be useful for the assignment

Commenting Complex Code
When we have multiple-step functions, it’s a good idea to
intersperse comments:

x = y ** 2
z = 2 + x / 5
Compute manifold variance
for i in range(x):

first, frobulate the chunks:
z += f(i) + f(x)
x = z * 2
then invert the remainder
z = -(1 / z)

It’s up to you when to write comments versus defining helper
functions.

Testing Your Code

How do you know your code works?
One way to build confidence is to test with specific inputs.
You can do this in various ways:

def my_fun(x):
...

print(my_fun(5)) # should be 17
print(my_fun(12)) # should be 9
print(my_fun(20)) # should be 142

Testing Your Code
It may be better to split the tests from the code:

▶ In code.py:

def my_fun(x):
...

▶ In test.py:

import code
if code.my_fun(5) != 17:

print("wrong for 5")
if code.my_fun(12) != 9:

print("wrong for 12")
etc

Then we can run python3 test.py to get some information.

Testing Your Code

The starter code takes this one step further by using the
built-in assert statement, which will terminate the program if
its input is False.
Testing, of course, can only reveal the presence of bugs and
never their absence (thanks to E.W. Dijkstra, whose name
you’ll learn in CSCI 062 or 140, for this insight).
In fact, writing tests before writing your code may be a useful
way to know what the code will need to do, and to try to build
up and understand the relation between inputs and outputs.

	Loops Repeat Computation
	Looping Over Ranges
	Quiz
	Assignment 3: Credit Cards

