
From Functions to Programs

Outline

Building Programs from Functions

Function Machines

Quiz

Functions can Call Other Functions

We have already seen functions that call other functions to do their
work:

def say_hello():

print("hello, world!")

Functions Calling Functions

Of course, we can call our own functions too.

def squared_distance(p1, p2):

(x1, y1) = p1

(x2, y2) = p2

dx = x2 - x1

dy = y2 - y1

return dx**2 + dy**2

def distance(p1, p2):

sqdist = squared_distance(p1, p2)

return math.sqrt(sqdist)

Designing Functions

We can use our own functions to reduce duplication in our code.

first_person = input("Person 1? ")

second_person = input("Person 2? ")

first_greeting = "hello, "+first_person

second_greeting = "hello, "+second_person

print(first_greeting)

print(second_greeting)

Designing Functions

Compare:

def greet(person):

return "hello, "+person

print(greet(input("Person 1? ")))

print(greet(input("Person 2? ")))

Exercise

This is where we just ended up:

def greet(person):

return "hello, "+person

print(greet(input("Person 1? ")))

print(greet(input("Person 2? ")))

Could duplication be reduced even further?
Is the result better or worse? Why?

Aesthetic: A Function Should Have One Job

▶ Python functions should be short

▶ Python functions should be simple

If we have a bug, we should be able to narrow down to exactly
which function causes the problem.

Function Machines

Each function can be thought of as a little machine that processes
inputs into outputs. The hardest part is describing the inputs and
outputs in a way that is generally useful. For example:

▶ greet takes a person name as input and outputs an
appropriate greeting

▶ distance takes a pair of 2D points and outputs their distance

This definition could be a great comment to put at the beginning
of a function!

Breaking Down Complex Functions

Processing data may involve many steps. We have seen the use of
variables to organize these steps, and often we can use functions as
a more powerful tool towards the same end.

def transform_point(point, scale, translation):

(px, py) = point

(sx, sy) = scale

(tx, ty) = translation

return ((px+tx) * sx, (py+ty) * sy)

Breaking Down Complex Functions

This function is mostly OK, but is a bit inconvenient if we are using
an identity in either scale or translation:

transform_point((10, 10), (1, 1), (200, 20))

(1,1) means no change in scale

transform_point((5, 1), (2, 1), (0, 0))

(0,0) means no translation

Breaking Down Complex Functions

Compare with this version:

def scale_point(point, scale):

(px, py) = point

(sx, sy) = scale

return (px*sx, py*sy)

def translate_point(point, translation):

(px, py) = point

(tx, ty) = translation

return (px+tx, py+ty)

def transform_point(point, scale, translation):

return translate_point(scale_point(point, scale),

translation)

Breaking Down Complex Functions

Here we have dedicated functions for the basic operations and
compose them to define transform_point.
This function also has different behavior from the previous version.
Specifically, it’s correct (we should translate, then scale!).
Giving each function one role and composing functions makes the
correct behavior easier to implement!

Exercise
Simplify:

def do_the_program():

first_name = input("name? ")

first_num = int(input("number? ")) * 2

second_name = input("name? ")

second_num = int(input("number? ")) * 2

if first_num < second_num:

swap = first_name

first_name = second_name

second_name = swap

swap = first_num

first_num = second_num

second_num = swap

print(first_name,first_num,second_name,second_num)

“Sans-IO”

It’s tempting to write functions that grab data exactly when needed:

def greet():

print("hello ",input("Name? "))

greet()

print("and also...")

greet()

But what if we wanted to change the greeting based on the name?
We’d need to rewrite the whole program.
Instead, we could separate the I/O from the computation. . .

“Sans-IO”

def greet(name):

greeting = f"Hello, {name}!"

if name == "Prof Osborn":

greeting = f"Salutations, {name}!"

return greeting

print(greet(input("Name? ")))

print("and also...")

print(greet(input("Name? ")))

This version puts all the input and output in one place, separating
the way we get and present values from the way we process values.

Exercise

Here’s a function that computes the area and perimeter of a
rectangle. Rewrite it in sans-IO style (i.e., the rect_props function
will need to take input parameters and return some output).

def rect_props():

width = float(input("W? "))

height = float(input("H? "))

area = width*height

perimeter = 2*(width+height)

print(f"Area {area}, Perimeter {perimeter}")

Quiz

	Building Programs from Functions
	Function Machines
	Quiz

