Pomona College
Department of Computer Science

Constructing 3D Distance Fields on GPUs

Joshua Landgraf

May 5, 2016

Submitted as part of the senior exercise for the degree of
Bachelor of Arts in Computer Science

Professors Jeff Amelang and Tzu-Yi Chen, advisors

Copyright (© 2016 Joshua Landgraf

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission
of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

Many fields benefit from and rely on being able to find the
distance from a point to the surface of a mesh. 3D distance
fields provide a quick way to look up this vital information,
but have been expensive to compute depending on the ap-
proaches and hardware used. This paper presents several
methods to improve the efficiency of computing 3D distance
fields in parallel, especially on GPUs, and analyzes their per-
formance.

ii

Acknowledgments

I am deeply grateful to Professor Amelang for his advice and
support throughout the process of working on my thesis and
for his help with developing and implementing my methods.
I would also like to thank Professor Chen for her help with
managing Pomona’s thesis requirements and for her feedback
on my thesis.

iii

iv

Contents

Abstract e

Acknowledgments Lo

List of Figures

List of Tables
Preface
1 Background

1.1 Distance Fields

1.2 Previous Work in Algorithms

1.3 GPUs e

1.4 Previous Work in Implementations
2 Methods

2.1 Data Structures

2.2 Points

23 Edges

2.4 Faces. e e
3 Examples

3.1 Canister Mesh
4 Results

4.1 Scaling with Problem Size

4.2 Performance Breakdown

4.3 Compression

4.4 Distance Field Data Structure and Atomics
5 Conclusion

5.1 Future Work

5.2 System Configuration

15
16
20
21
23

25
25

29
29
32
33
34

Bibliography

vi

39

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6

1.7
1.8

1.9

2.1

3.1

3.2

4.1

4.2

4.3

4.4

Two meshes and slices of their distance fields [PS06] 1
The surface of a femur represented using (a) a mesh and (b)

voxels [LvLO9]o 3
Pseudocode for the naive algorithm. 3
Pseudocode for Mauch’s algorithm. 4
Bounding polyhedra for points closest to different primitives

from a mesh. Taken from [PS06]. 5
The bounding volume from the meshsweeper algorithm [Gue01] 6
Pseudocode for the Meshsweeper algorithm. 7
The three triangles shown above all contribute to the angle-

weighted pseudonormal at vertex x with weights oy, ag, and

asg [BAO5} 7
Different classifications of regions when sweeping across the
z-axis [SOMO4]o L 12
Box-like regions of space can be divided into 8 box-like octants
Wik13] 17
Canister mesh processed with X, Y, and Z extents of 1000
points. 26
Canister mesh processed with maximum distance of 0.004. . . 27

Time taken to generate distance field (with a lattice extent

of 1000) vs. cutoff distance 30
Time taken to generate distance field (with a cutoff distance
of 0.004) vs. lattice extent 30
Size of the point data structure (with a lattice extent of 1000)
vs. cutoff distance Lo 31
Size of the point data structure (with a cutoff distance of
0.004) vs. lattice extent L. 31

vii

viii

List of Tables

4.1 Performance breakdown when processing the canister mesh
with a cutoff distance of 0.004 and X / Y / Z extents of 1500 32

4.2 Compression ratios of different canister distance fields 33
4.3 Slowdowns due to adding data to the octree and accessing it
ingeneral L Lo 34

ix

Preface

Distance fields are used to solve many different problems in the modern
world. They are currently used to represent, modify, and display objects by
the computer graphics and volume graphics communities. Computer vision
researchers also use 3D distance fields to help process images and robotics
researchers have found them useful for planning paths and navigating envi-
ronments. Distance fields have even been used by physicists to solve Eikonal
equations and have become quite popular in medical imaging.

However, it can take a lot of computational power to generate 3D dis-
tance fields. Because of this, there has been a significant amount of research
on different approaches to computing distance fields efficiently. More re-
cently, researchers have been working to ways to take advantage of highly
parallel GPUs to accelerate these calculations. In this paper, we explain
what exactly 3D distance fields are (Section 1.1) and cover some of these
distance field algorithms (Section 1.2). We will also cover the basics of GPU
architecture (Section 1.3) and discuss some previous attempts at adapting
distance field calculations for GPU hardware (Section 1.4).

After providing a background for out work, we will present our own
methods for efficiently creating 3D distance fields on GPUs. This includes
the data structures used by our methods (Section 2.1) as well as the actual
approaches to computing the distance fields (Sections 2.2, 2.3, and 2.4).

In addition to explaining our methods, we will also demonstrate some of
the results of using out methods (Section 3) and do an in-depth analysis of
the performance of our methods (Section 4).

Finally, we will wrap up our paper (Section 5) and discuss potential
continuations of our work (Section 5.1).

xi

xii

Chapter 1

Background

In this chapter, we provide a background on what exactly distance fields
are (Section 1.1) and some of the major approaches to computing them ef-
ficiently (Section 1.2). We also discuss elements of GPU architecture and
programming that are relevant to the methods presented in this paper (Sec-
tion 1.3) and previous work in implementing distance field calculations on
GPUs (Section 1.4).

1.1 Distance Fields

A distance field is simply a collection of distances from certain points to a
surface. While this may seem like a fairly straightforward definition, there is
actually a lot of variability in what exactly constitutes a distance field. For
instance, the distances in a distance field can actually be signed or unsigned.
While unsigned distances may be easier to compute, signed distances allow
for detecting whether a point is inside an object or not, as the distance to a

Figure 1.1: Two meshes and slices of their distance fields [PS06]

surface from the inside is negative. The distances in a distance field are also
the shortest distance from a point to the surface, not the smallest. This is
important when working with signed distances because a negative distance
with a greater magnitude than another distance will be smaller, but not
shorter. Finally, some distance fields may also contain data on which point
on the surface was closest to the starting point.

Distance fields can also take on a variety of dimensions. A distance be-
tween just one point and a surface could be considered a zero-dimensional
distance field. However, two-dimensional and three-dimensional distance
fields are much more useful when working with images and surfaces as they
contain more points in higher dimensions. While 2D distance fields are still
of interest today (Valve has used them in their Source engine [Gre07]), 3D
distance fields involve significantly more computation to generate and are
more relevant to processing 3D graphics, especially with the increased use
of volume graphics. It is also worth noting that the points in a distance
field do not necessarily have to fill the bounding box around the image or
mesh. Sometimes calculations only need distances to points within a thresh-
old distance from the image or surface and a significant amount of space can
be saved by storing just these distances in the field. This is demonstrated
in Figure 1.1. While not required, the points in a distance field are often
evenly distributed over a grid or lattice. That is, there is a constant spacing
between points along each axis. This regularity makes it easy to convert be-
tween distance fields and voxel representations of data (like the one shown
in Figure 1.2) because the area closest to each point is identical.

The surfaces that distance fields are generated from can also vary sig-
nificantly. These surfaces are often represented as a mesh of triangles or
polyhedra, but they can also be represented as a grid of voxels. Figure 1.2
shows the differences between these two methods. They are so dissimilar
that different approaches are necessary when working with them. For the
purpose of this paper, we will focus on surfaces represented as meshes of
triangles as this seems to be the most common type of surface used when
generating 3D distance fields.

1.2 Previous Work in Algorithms

There has been a great deal of research on algorithms for computing 3D
distance fields. In fact, there are at least 10 different algorithms which vary

Figure 1.2: The surface of a femur represented using (a) a mesh and (b)
voxels [LvL09]

for each point in grid:
best_distance = infinity
for each triangle in mesh:
distance = distance from point to triangle
if abs(distance) < abs(best_distance):
best_distance = distance
distances[point] = best_distance

Figure 1.3: Pseudocode for the naive algorithm.

for each point in grid:
distances[point] = infinity
for each primitive in triangle in mesh:
polyhedron = bounding polyhedron for primitive
grid_points = scan_convert(polyhedron)
for each point in grid_points:
distance = distance from point to primitive
if abs(distance) < abs(distances[point]):
distances[point] = distance

Figure 1.4: Pseudocode for Mauch’s algorithm.

significantly in the time they take to compute and in the range of the their
accuracy [JBS06]. Before going on to cover some of the more advanced
3D distance field algorithms, I will cover a naive algorithm to show how to
convert meshes into distance fields.

1.2.1 Naive algorithm

Perhaps the simplest naive algorithm would be to iterate over every point
in a grid and, for each point, find the shortest distance from a triangle in
the mesh to that point (by iterating over every triangle in the mesh). The
pseudocode in Figure 1.3 helps explain how this algorithm would work (note
that abs represents the absolute value function).

While a naive algorithm will correctly compute the distance transform,
it is also likely to be very slow. For instance, the above algorithm spends a
lot of time computing distances to triangles that are nowhere near the point
of interest. However, Sean Mauch found that these problems can be solved
using a technique called scan conversion [Mau03]. Scan conversion takes an
object and turns it into grid points. In computer graphics, scan conversion
can refer to rasterization, the process of converting objects into a 2D image.
However, in this case, we are interested in converting 3D objects into the
3D points contained within them.

1.2.2 Mauch’s algorithm

Mauch’s algorithm is able to use scan conversion to be more efficient than
a naive algorithm because it can find polyhedra that contain the points
closest to a triangle within a certain distance [Mau00]. Once it finds these

Figure 1.5: Bounding polyhedra for points closest to different primitives
from a mesh. Taken from [PS06].

polyhedra, it can scan convert them into points that the triangle might
be closest to and only find the distances from those points to the triangle.
Mauch’s algorithm is also more efficient because it handles the different
components of triangles separately. For instance, when handling a vertex
of a triangle, Mauch’s algorithm generates a polyhedron that will contain
grid points that may be closest to that vertex. After scan converting this
polyhedron, the algorithm only needs to calculate the distances from the
grid points to the vertex from the triangle. This process is significantly
faster than finding the distances from these grid points to the triangle as
a whole. Mauch’s algorithm also generates polyhedra so that they do not
significantly overlap with each other (i.e. the polyhedron for a line from a
triangle will not contain many points in the polyhedron for the face of the
same triangle). This way work is not wasted on calculating distances from
grid points to one part of the triangle when the distance to another part
will be smaller anyway. Figure 1.5 shows what such polyhedra might look
like. Note that the figure uses an expanded view and the polyhedra would
normally be flush with the surface of the mesh. The pseudocode in Figure
1.4 should help show how Mauch’s algorithm works.

1.2.3 Meshsweeper algorithm

Another algorithm that takes advantage of spatial locality is the “mesh-
sweeper” algorithm [Gue0Ol]. Unlike Mauch’s algorithm, the meshsweeper
algorithm works by accelerating individual distance calculations. However,

Figure 1.6: The bounding volume from the meshsweeper algorithm [Gue01]

this method is significantly more efficient than using octrees or k-D trees
(which accelerate lookups using trees whose branches contain objects in pro-
gressively smaller regions of space). Instead of using traditional bounding
regions (which are usually just bounding boxes), the meshsweeper algorithm
uses regions whose points are within a certain distance € of a triangle in
space. Figure 1.6 shows what this bounding volume looks like. This defini-
tion of a bounding region allows the meshsweeper algorithm to easily break
up the mesh into bounding regions and calculate minimum and maximum
distances to the objects inside them (if d is the distance from a point to
the triangle defining the bounding region, then objects inside the bounding
region cannot be closer than d — € or farther than d + € from the point).

The algorithm starts by breaking up the mesh into high-level bounding
regions and storing them in a priority queue in the order of their minimum
distance to the query point. The algorithm is then able to prune regions
whose minimum distance is greater than the maximum distance to objects
in the first region. Once the queue is initialized, the algorithm can remove
the first region in the queue, break it up into smaller regions, enqueue them,
and prune the queue again. This process can be repeated to narrow the
estimate of the distance from the query point to the mesh until the regions
at the front of the priority queue only contains one object. At this point, a
bounding sphere can be found which will only contain points that share the
same closest object in the mesh as the query point. Unfortunately, since the
regions in the queue cannot be recombined, the algorithm has to eventually
restart its mesh refinement when it receives a query for a point sufficiently
far from the first query point. However, before then the algorithm can take
advantage of its existing refinement and speed up queries for points near the
first point queried.

The pseudocode in Figure 1.7 helps demonstrate how the algorithm
works for a single point. This algorithm could be used to make a 3D dis-

queue = new priority_queue
region = bounding region containing entire mesh
enqueue region onto queue
while region at front of queue contains more than one object:
region = dequeue region from queue
regions = split region into subregions
enqueue each region in regions
max_distance = max distance from point to first region in queue
prune regions from queue with min distance greater than max_distance
distances[point] = distance from point to object in first region in queue

Figure 1.7: Pseudocode for the Meshsweeper algorithm.

X a3
Ve

25

Figure 1.8: The three triangles shown above all contribute to the angle-
weighted pseudonormal at vertex x with weights a1, as, and ag [BAO5]

tance field by doing queries for points in the distance field and filling out the
distances one point at a time. However, this process can be accelerated for
points near each other by reusing the priority queue for a point nearby and
increasing the minimum and maximum distances of the regions in the queue
by the distance between the points. This algorithm could also potentially
be parallelized by having different threads handle different regions of the
distance field and then combining the results.

1.2.4 Angle-weighted Pseudonormal

The final algorithm this paper will cover focuses on calculating the signs of
distances from arbitrary points to points on a mesh [BA05]. The result of
this paper stems from the observation that, if given an arbitrary point p
in space, the closest point ¢ on the mesh to p, and the normal n at point

¢, n - (p — c) will have the correct sign (positive if p is outside the mesh,
negative is p is inside the mesh, and 0 if p is on the mesh). This is because
n points away from the mesh and (p — ¢) points towards p, so the only way
n - (p — ¢) will be positive is if (p — ¢) points in the same direction as n and
p is therefore outside the mesh. However, n is not always defined. If ¢ is
on a vertex or an edge, we cannot just use the normal of any of the faces
of the triangles that contain c¢. This is where the key contribution of the
paper comes in: the authors prove that if we use use the angle-weighted
pseudonormal for the normal at ¢, we can still get the correct sign for the
distance (although we cannot use n - (p — ¢) to calculate the magnitude of
the distance anymore because n and (p — ¢) will not necessarily point in
the exact same direction, resulting in |n - (p — ¢)| not necessarily equalling
Ip — ell):

We can calculate angle-weighted pseudonormals for points on vertices
and edges by taking the normals for the triangles that share that vertex
or edge, weight them by the incident angles of the triangles at that point,
and combine them to get the "normal” at that point using the following

. ANy
>, aun,

equation: n, = TS e where n. is the angle-weighted pseudonormal at

point ¢ and 4 is used to iterate over all the triangles that contain c. As the
authors point out, when c¢ is on the face of the triangle, the incident angle is
27 and the angle-weighted pseudonormal is the same as the original normal
of the triangle face. For edge cases, the incident angle for each triangle will
just be 7, and the angle-weighted pseudonormal will be the average of the
normals of the two triangles. The authors go on to show that using their
method to compute the signs for distances added practically no overhead
to distance calculations and 20 — 40% overhead to preprocessing the mesh.
However, in all of their example meshes, the time it took to generated the
tree hierarchies was significantly less than the time the distance calculations
took.

1.3 GPUs

GPUs, or Graphics Processing Units, are massively parallel processors that
are highly optimized for rendering graphics. However, programmers have
found that they are also useful for accelerating a wide variety of highly
parallel tasks that extend far beyond computer graphics. There now ex-
ist a variety of libraries and programming languages to help programmers
write parallel programs for GPUs including OpenCL, CUDA, and Kokkos.
While these languages may use different terminology to refer to different

parts of GPUs, the concepts are generally the same. In this chapter, I
will use CUDA’s terminology to discuss the elements of GPU hardware and
programming that are relevant to the methods presented in this paper.

1.3.1 GPU Architecture

At a very high level, a GPU can look a lot like a CPU. Just like how many
modern CPUs have multiple cores, each GPU can be broken down into
streaming multiprocessors, each of which has its own cache and registers.
However, while most CPUs only have 2 or 4 cores, a GPU can have over one
or two dozen streaming multiprocessors (SMs). Also, just like how many
CPUs now support running multiple threads on the same core (called si-
multaneous multithreading or hyperthreading), each SM can quickly switch
between “GPU threads”, called warps. However, instead of being able to
switch between two or eight warps, a SM can store up to hundreds of warps
simultaneously.

One final similarity between CPUs and GPUs is their ability to process
data in vectors. Just like how CPUs have special vector units that can
perform the same operation on multiple pieces of data at the same time, each
warp can perform operations on 32 or 64 numbers at once (32 in Nvidia’s
CUDA and 64 on AMD’s GCN architecture). However, warps have the
added benefit of being able to selectively disable some of these operations,
so that a vector operation appears to only happen to some of the pieces
of data instead of all of them. This allows a warp to appear as if it is
actually made up of 32 independent threads. To prevent confusion between
these two types of threads on a GPU, we will refer to warps as GPU threads
(since they are managed like threads by the GPU hardware) and refer to the
“threads” within warps as CUDA threads (because CUDA exposes each as
an independent thread to programmers). While this powerful feature allows
each CUDA thread to have its own control flow, performance will suffer
significantly if threads within a warp take different branches and try to
execute different instructions (this phenomenon is called warp divergence).
For this reason, it is good practice to view warps as a single thread that uses
vector processing rather than a collection of 32 independent threads.

Finally, it is also worth noting that GPUs have their own RAM that is
separate from CPU RAM. While GPU RAM has a much higher bandwidth
than CPU RAM (up to around 1TB/s in Nvidia’s Pascal architecture vs.
100GB/s for an Intel Xeon CPU), GPU RAM has traditionally been limited
in size and required explicit transfers to and from the CPU over the relatively
slow PCle bus. While technologies like Nvidia’s NVLink are making it faster

and easier for GPUs to access CPU RAM, NVLink is only supported on IBM
POWER CPUs at the moment and explicit memory transfers will still be
necessary to optimize the performance of some applications.

1.3.2 GPU Programming

When doing general-purpose programming on GPUs (GPGPU) with CUDA,
computations are broken down into threads, blocks, and kernels. As ex-
plained earlier, a CUDA thread corresponds to one of the 32 “threads” in
a warp. A block is a collection of CUDA threads that can work together.
Finally, kernels are the actual programs that are run on GPUs. A kernel
specifies a number of blocks to spawn on the GPU, how many CUDA threads
are in each block, and the code that will run on each of its CUDA threads.

CUDA allows programmers to access fours kinds of memory: global,
constant, shared, and local. Global memory is memory that is accessible
by all CUDA threads in a kernel. It is allocated in GPU RAM and is the
slowest form of memory on the GPU. Constant memory is also available to all
CUDA threads in a kernel. However, it cannot be written to and is designed
so that it works best when all threads read from the same location. While the
code presented in this paper do not explicitly use constant memory, CUDA
does use it to pass kernel arguments to each CUDA thread launched by the
kernel. Shared memory is a chunk of block-specific memory that can only
be accessed by threads in the same block. Shared memory is significantly
smaller and faster than GPU RAM (it actually shares the same hardware
as the L1 cache in Nvidia GPUs) and it is automatically freed when a block
finishes executing. Finally, local memory is specific to each CUDA thread
and is used when the thread cannot use registers for thread-specific memory
(e.g. when the thread runs out of registers or accesses arbitrary indices from
a thread-local array). Like global memory, local memory is allocated from
GPU RAM and is not as fast as shared or constant memory.

CUDA also includes operations that are useful for organizing threads
within kernels and blocks. The only way for threads cooperate across an
entire kernel is through GPU RAM. In cases where multiple threads could
access the same memory location, atomic operations and global memory
loads come in handy. Atomic operations prevent threads from updating
the same location in memory at the same time. They are available for
both global and shared memory. Global memory loads are useful when
reading from global memory that may have been updated by another block.
This is because CUDA does not guarantee that its L1 caches are up-to-
date. However, global memory loads are not necessary for read-only data

10

as the cached value should be correct. CUDA also provides block-wide
synchronization barriers that guarantee all threads in a block have reached
a certain point in the program. This is handy for preventing threads from
reading from shared memory until every warp in a block has finished writing
to it (since warps are scheduled independently from each other on SMs).

1.3.3 Kokkos

Kokkos is a relatively new programming model for both CPUs and GPUs
that is being developed by Sandia National Laboratory. Kokkos can change
memory layouts and execution patterns to optimize programs for the archi-
tecture it’s being compiling for. This allows programmers to achieve consis-
tently good performance across architectures without having to specifically
optimize their code for each. We used Kokkos to implement the methods
presented in this paper as it can be easier to program in than CUDA. How-
ever, under the hood, Kokkos uses CUDA to execute programs on GPUs
and can easily get similar performance to some programs written in CUDA.
As mentioned earlier, while Kokkos uses different terminology than CUDA,
it uses the same concepts for breaking down computations. Instead of blocks,
Kokkos has “teams” that can work together using shared memory. In fact,
a team in Kokkos literally turns into a CUDA block when compiling in the
current version of Kokkos. Just like CUDA, Kokkos also supports team-wide
barriers, atomics, and global memory loads. While some more advanced fea-
tures of CUDA are not available in Kokkos, it would defeat the purpose of
trying to create a programming language that runs well across architectures.

1.4 Previous Work in Implementations

While algorithms research is important to reduce the amount of computation
required to generate a 3D distance field, implementation research is also
important as it can significantly speed up the rate at which algorithms are
computed. One area that has gathered a lot of interest recently is using
GPUs to accelerate portions of distance field algorithms, especially since
they are designed for graphics calculations and have a lot of parallel compute
power. This section will detail some of the attempts to use GPUs in 3D
distance field calculations.

One of the most obvious ways to use GPUs to speed up distance field
calculations is to use them to do what they were originally designed for:
scan conversion. In Mauch’s algorithm, scan conversion is used to convert
polyhedrons to the points inside them. A naive approach to using GPUs to

11

(] Approaching
[JIntersecting

Swept
[Receding

]

Figure 1.9: Different classifications of regions when sweeping across the z-
axis [SOMO4]

handle this scan conversion would be to send the polyhedrons (or 2D slices
of them) to the GPU and have it render them. Unfortunately, this idea does
not work very well in practice due to limited data bandwidth between CPUs
and GPUs [SP03].

Sigg et al. found that they could significantly reduce the amount of
data that had to be transferred by only generating one bounding prism per
triangle in the mesh (instead of a bounding polyhedron for each triangle face,
edge, and vertex). In doing so, they were able to significantly reduce the
bandwidth required to send the data to the GPU and were able to get a 3.3-
16.7x speedup over Mauch’s algorithm depending on factors like the mesh
size and grid resolution. Although, it is worth noting that in a later paper
Sigg and Peikert pointed out that their method can lead to gaps where there
are no prisms at all [PS06]. They found that this can be fixed by making the
prisms bigger so that they covered the normals of the vertices, even in the
worst cases. While this made the polyhedra overlap more than necessary,
the authors were still able to get speedups similar to those in their earlier
paper.

Sud et al. came up with a different approach for speeding up calculations
on the GPU [SOMO04]. For the first part of their method, they classified
regions as either approaching, intersecting, or receding when sweeping across
z-axis (Figure 1.9). Approaching sites might be relevant to calculate the
distance field after certain z values, intersecting sites are definitely necessary
at certain z values, and receding sites can be ignored after certain z values.
These classifications allow their algorithm to ignore sites that would not
contribute to their distance field calculations as it sweeps through slices of
the grid.

The second part of Sud et al.’s involves using the maximum distance to

12

a site to restrict the distance calculations to that site. To calculate these
maximum distances for each site for a slice, the authors start by taking the
maximum distance from the last slice and add the distance between slices to
get an upper bound on the potential maximum distance for the current slice.
This potential maximum distance allows the algorithm to ignore calculating
distances from a site to regions of a slice where the distance to that site is
guaranteed to be greater than this maximum distance, reducing the number
of distance calculations. Using these two approaches, Sud et al. were able
to significantly improve the efficiency of using the GPU to do distance field
calculations.

However, Sud et al. found that other GPU hardware could also be
used to accelerate distance field calculations as well. They were able to
take advantage of the GPU’s interpolation hardware so by feeding data
to the GPU as vertex attributes and assigning points in slices to pixels
in the output of the GPU [SGGMO06]. In doing so, Sud et al. were able to
recover distance vector data from the GPU. When used to identify proximity
between objects, this method achieved a 7-12x speedup over a previous one
that also used GPU hardware. However, they also found that they could
use the GPU’s vertex processors, stencil capabilities, and texture memory
to compute surface distance maps [SGGT07]. After doing so, they were able
to achieve a speedup of 8x over their results published the previous year.

13

14

Chapter 2

Methods

As seen in the previous work on distance field algorithms (Section 1.2), there
are two major approaches to computing distance fields. In one method, the
program iterates over the elements of the mesh and finds relevant points to
find distances to. In the other method, the program iterates over points and
finds the closest element in the mesh to get the distance to. Unfortunately,
neither of these methods will work well in all situations. If the user only cares
about points within a small distance of the surface, the first method makes
the most sense and will be the most efficient. However, if the user wants the
distance to every point in a large area, this will obviously not work very well
as each point will have a distance calculated to it many times over. In the
worst case, each primitive will calculate the distance from itself to almost
all the points in the distance field, which approaches the massive amount
of work that would have to be done in the naive algorithm. Instead, the
second method would work better here because a good algorithm could find
the closest primitive in the mesh in at least logarithmic time. However, the
second method will obviously not work well in the original problem because
it will calculate the distance to many more points than necessary and each
distance calculation will be relatively expensive. For the purposes of this
paper, we chose to focus on methods that work best for small distances from
the mesh surface. These kinds of distance fields are useful for a variety of
graphics applications and utilize limited GPU memory better (we assume
that distances to points that are close to the surface are probably more
relevant than distances to points that are farther away from the mesh).
When iterating over elements of the mesh, we also had the choice of
iterating over whole triangles or their primitives (vertices, edges, and faces).
Since the first method involves a lot of repeated work (edges are processed
twice and points are processed at least 3 times over), we decided to iterate

15

over them separately and optimize our methods for each primitive. Our
methods for each primitive (points, edges, and faces) are covered below
(Sections 2.2, 2.3, and 2.4).

Some final, but very important aspects of our methods, are the data
structures used to store and recall distances to points and to hold the mesh
data. Not only is it important for the point data structure to be compact,
but it must also be easily be built at run time on the GPU. We discuss all
of these data structures below (Section 2.1).

2.1 Data Structures

Our code uses two static data structures to store mesh and geometry data
on the GPU. Our mesh data consists of the number of vertices in the mesh;
the number of triangle faces in the mesh; 3 arrays of floats for the X, Y,
and Z, locations of the points; and 3 arrays of unsigned integers indicating
the first, second, and third indices of the points that form each triangle. We
went with a “struct of arrays” instead of an “array of structs” layout as the
former results in more efficient fetching of data from GPU RAM (having
threads load sequential indices from memory at the same time reduces the
number of cache lines that must be retrieved from relatively slow global
memory).

The geometry data describes the grid / lattice that determines the num-
ber and locations of the points in the distance field. The geometry data
contains the minimum and maximum X, Y, and Z coordinates for points in
the lattice; the number of points along each axis (also called extents); and the
distance between adjacent points, as measured along each axis. For example,
a lattice could be described as having minimum coordinates (0f,0f,0f) and
maximum coordinates (1f,1f,1f) (the f indicates that the coordinates are
floating point values in space). If there are 3 points along the X axis and 2
points along the Y and Z axes, then the coordinates of every point in the grid
would be (0f,0£,0f), (0f,0£,1f), (0f,1£,0f), (0f,1f,1f), (0.5£,0f,0f),
(0.5£,07,1f), (05£.1,0f), (0.5£. 11, 1f), (Lf,01,0f), (Lf, 0, Lf), (1, 1f,0f),
and (1f,1f,1f). In order to reference each point in a consistent manner, we
can identify them by their index along each axis. For example, the point
(0.5f,1f,1f) would have indices (1i,1¢,17) since it is the 1th point with
respect to the X axis, the 1th point with respect to the Y axis, and the 1th
point with respect to the Z axis (the i indicates that the coordinates are inte-
ger indices). The means we can reference points by both their coordinates in
space (e.g. (1f,0f,1f)) and their order (e.g. (27,04, 17)). Since integers are

16

7 ///VX/

VIII

Figure 2.1: Box-like regions of space can be divided into 8 box-like octants
[Wik13]

not susceptible to the errors that floating point numbers can accumulate over
time, we try to reference points by their integer coordinates as much as possi-
ble and only generate their floating point coordinates when needed. We can
do this for each axis by calculating min+ i (max —min)/(num_points —1),
where min and max are the minimum and maximum coordinates for the
axis, num_points is the number of points along the axis, and i is the index of
the point along the axis (therefore ranging from 0 to num_points —1). Note
that (max —min)/(num_points—1) is simply the distance between adjacent
points along an axis and will have already been precomputed, meaning that
the conversion from integer indices to floating point coordinates is fairly
efficient.

For our distance field data structure, we decided to use an octree. In
our specific implementation, our octree consists of two types of nodes: non-
terminal nodes and leaf nodes. Non-terminal nodes correspond to ranges of
points along each axis. For example, the root node for the octree represent-
ing the grid defined earlier would represent points with X indices ranging
from 0 to 2, Y indicies ranging from 0 to 1, and Z indices ranging from 0 to
1 (all of the points in the grid). Nonterminal nodes consist of 8 references to
subnodes, each of which corresponds to one of the 8 octants that the node
can be divided into (Figure 2.1). For example, one subnode of the root node

17

would represent points with X indices ranging from 0 to 1, Y indices rang-
ing from 0 to 0, and Z indicies ranging from 0 to 0. If a subnode’s region is
narrowed down to a single point in the entire grid, the subnode will not be a
non-terminal node, but a leaf node. A leaf node simply contains the floating
point distance from the surface to the sole point in the region represented
by the leaf node.

This approach to storing distance data on GPUs works well for a variety
of reasons. First of all, it is fairly compact (at least when each axis has a
similar extent). Since it is unambiguous which point each leaf node refers to,
the X, Y, and Z index of the point to not have to be explicitly stored in the
data structure, saving a significant amount of space. We can also save space
with octrees by not storing distances to grid points that are irrelevant. For
many meshes, the majority of the points are not even close to the surface
represented, which means massive space savings compared to a naive data
structure that allocates space for the distance to every point in the grid.
Due to the nature of our octree, all leaf nodes will be at roughly the same
depth. This means that threads in a warp will not have to wait long for the
rest of the threads to finish traversing the octree. Furthermore, if multiple
threads in a warp are processing points near each other, they will likely make
similar traversals through the tree, resulting in less data having to be fetched
from relatively slow global memory to the warp. Finally, the calculations
required to determine which subnode contains a point of interest are fairly
lightweight, which helps reduce the overhead of accessing data from the
octree.

Octrees also have one more significant advantage that makes them a good
fit for calculating distance fields: they can easily be built on demand, even
on GPUs. Since our code generates grid points to find distances to at run
time, new nodes to store these distances will have to be added to the tree
as run time as well. This can be accomplished as follows. We first start by
reserving the majority of the free memory on the GPU for the octree. Since
we don’t know how large it will eventually get, it is better to allocate as much
as possible than to run out of space. In our code, we reserve 85% of memory
left over after copying over our mesh and geometry data. While we would
prefer to allocate more, we found that CUDA would not let us allocate all
of the “free” memory on the GPU. We also allocate space for another global
variable that is used to keep track of how much of space reserved for the
octree is actually used. To finish initializing the octree, we zero the memory
and set the allocated space to 8 (meaning 8 spaces have been reserved for
the 8 node references that make up the root node). It is worth noting
at this point that the octree is actually made up of a union of (unsigned)

18

integer indices and floating point distances. Since it is indeterminate at
compile time which memory locations will store which kinds of values and
we are managing our own memory, we have to be prepared to be able to
store either kind of value in any space in the octree. This means that non-
terminal nodes are really just 8 contiguous integer values (which can hold
the indexes of other nodes), leaf nodes are just sole floating point values
(which can hold a distance value), and references to nodes are just the index
of the first element in the node. While the references could just be replaced
by pointers to the start of the nodes, it is easier to offset indices as required
when accessing all but the first element of non-terminal nodes. It is also
worth noting that using structs would be difficult in this situation as the
structs for non-terminal nodes would be 32 bytes in size while the structs
for leaf nodes would be 4 bytes in size. Since each index in the octree could
contain either of these nodes, C++ would require 32 bytes of space to be
allocated, even if we just wanted to store a leaf node. Therefore we decided
to not use this approach.

As our program runs, it will eventually identify grid points within the
cutoff distance of the mesh and it will need to be able to save the distance
between these points and the surface of the mesh. Once a CUDA thread
has a distance to store, it starts by traversing the octree at the root node
and identifying which of the eight subnodes corresponds to the region that
contains the grid point of interest. Once it has the subnode, it grabs one of
the eight indices in the node that corresponds to the starting index of the
subnode of interest. This process repeats until the thread either finds the
index of the leaf node for the distance value of interest or it finds that the
index is uninitialized (i.e. still 0). In the second case, space needs to be
allocated for this node. In order to prevent other threads from allocating
space for the same node (or changing the index for the node once it has
been initialized), the thread tries to “lock” the index variable by atomically
attempting to replace the 0 with a reserved value. If the locking operation
succeeds, the thread knows it is safe to allocate space for the new node.
This is accomplished by increasing the size of the data structure (through
the global size value mentioned earlier) by the size of the desired node and
getting the original size value back. This size, which doubles as an index
values, is guaranteed to be unique, unused, and large enough to hold all the
node data. The thread then updates the index for the subnode with the
index of the space it just allocated for it. In the case that a thread finds
that an index is uninitialized but it does not successfully acquire the lock
for that index (because another thread acquired it first), the original thread
simply waits until the index has been updated, loads the index value, and

19

proceeds as before. This process repeats until the thread finally allocates
space for the data value of interest and initializes the data value with the
distance it wanted to store there. If space for the distance value was already
allocated, the thread must then repeatedly attempt to atomically replace
the old distance value with its own until the stored value is either less than
or equal to the value the thread originally wanted to store.

2.2 Points

When enumerating grid points within the cutoff distance triangle vertex,
there is one optimization that we can make that is not possible with the
other two triangle primitives. Since points do not vary in size like triangle
edges or faces, they do not require any kind of team work and can actually
be processed by individual threads within a warp.

Traditionally, the lattice points within the cutoff distance of a vertex
were found by using bounding boxes or GPU rendering hardware. However,
both of these methods process far more lattice points than necessary because
they process points in cubes and squares, which contain many more points
than spheres and circles. We came up with a novel method that almost ex-
clusively enumerates lattice points within the cutoff distance of the triangle
point. This method approximately halves the number of lattice points that
need to be processed without introducing any overhead from team / block
synchronization or warp divergence.

Our method starts by having each thread find the minimum and max-
imum X, Y, and Z values for lattice points around its point. Each thread
then iterates over the range of possible X values for lattice points around
the point. For each X value, the thread starts with a Y value that is in
the middle of the minimum and maximum Y values (placing it towards the
center). The thread then increases the Y value until the distance to the
original triangle point is greater than the cutoff distance, restarts with a
Y value 1 index smaller than the original starting value, and decreases the
Y value until the distance exceeds the cutoff (we assume an ideal Z value
during the distance-calculating process). This enumerates every Y value for
the given X value that could result in a lattice point that is within the cutoff
distance of the point. Finally, for each Y value, the thread then iterates over
Z values in the same way as it does for Y values (except we can calculate
the actual distance now because we have an X, Y, and Z value to work
with). By starting with Y and Z values towards the middle and working
our way outward, we guarantee we can stop enumerating more points once

20

we increase or decrease the Y or Z value too much. This prevents us from
enumerating much, if any, points outside the cutoff distance. If the thread
finds that a specific X /Y / Z value pair has a distance to the triangle point
that is less than the cutoff distance, it updates the distance to that lattice
point using the method discussed earlier (Section 2.1).

2.3 Edges

Unfortunately, processing edges is much more complex than processing points.
Since edges can be many different lengths and have many different orienta-
tions in space, we cannot use optimizations like those from our point meth-
ods. However, we did find some ways to utilize some of the more advanced
features of GPUs to help process edges in parallel.

Our edge processing method involves three separate stages to help break
down a complex problem into a simpler, more parallel one. In a naive
approach, one would just make a bounding box around the cylinder formed
from all the points within the cutoff distance of the edge. You could then just
iterate over every point in that bounding box and only save the distances to
points within the cutoff distance of the line. You would also have to filter
out points that do not project onto the line segment of interest (since lines
are infinite, you have to be careful not to use the distance from a lattice
point to part of the line that is not included in the edge of the triangle). To
reduce the amount of computation spent on processing bounding boxes, we
will only use the naive bounding box approach on the smallest chunk of the
cylinder / edge that we can.

The team / block first starts by figuring out which axis the cylinder /
edge is most aligned with. For the purpose of explaining this method, let’s
assume that this is the X axis. The code would then find the lattice point
that is closest to the edge for each step along the X axis. For example,
assume we have a lattice with a minimum X coordinate of 0, a maximum
X coordinate of 5, and a width of 6 points along the X axis. Let us also
assume that we have an edge that goes from (0.5f,—,—) to (3.5f,—,—)
(Y and Z coordinates are omitted because they are irrelevant). The code
would then find that the first lattice X coordinate on the line would be 1f
(or 17) and the last lattice X coordinate on the line would be 3f (or 3i).
For each coordinate in this range (17 to 3i), the code would then find the
Y and Z coordinates of the lattice points that place them closest to the
line for each X coordinate. This is accomplished by first finding the point
on the line with the given X coordinate, which can be done with linear

21

interpolation. Simply figure out how far along the line you are by calculating
percent = (x_coord — line_start_x)/(line_end_x — line_start_x) and use this
to weight each Y and Z coordinate (e.g. y = line_start_y + (1 — percent) x
line_end_y). To get the lattice Y and Z coordinates, you then simply round
the actual coordinates to the nearest lattice coordinates (which can be done
by converting the floating point coordinates to integer coordinates and back
while paying careful attention to reduce rounding error). These lattice points
are our “starting points” and we will return to them later. To complete
this stage of the method, we simply find the distance between each pair of
neighboring starting points and find the largest of all of them (which can
be done with atomics on shared memory or by having the team do a simple
reduction).

It then comes time to find which points are inside a chunk of the cylinder.
We will accomplish this by creating a bounding box around a small portion
of the cylinder and testing every point inside the bounding box to see if it
actually falls within the cylinder. We start by pretending that there is a
lattice point that lies in the center of the cylinder of interest (and therefore
on the line through the cylinder) and construct a bounding box around
this point that will contain any lattice point within the cutoff distance of
the central point (plus some error since the actual lattice points will likely
not fall perfectly on the line). For each lattice point in the bounding box,
the team then finds the euclidean distance to the central point and the
distance to the central point along the edge (i.e. project the lattice point
onto the edge and then measure the distance to the central point). We
can imagine the lattice point, the projection of the lattice point on the edge,
and the central point form a right triangle, with the central point and lattice
point connected via the hypotenuse. We know that the distance along the
line should not exceed half of the maximum distance between points that
we found earlier. We also know that the distance between the projected
point on the line and the lattice point should not exceed the cutoff distance
(plus some error because the starting points will not be perfectly on the
line whereas the central point is assumed to be). This gives us a maximum
distance for the hypotenuse, which can be used to throw out points that have
too high of a euclidean distance. We can also throw out points that are too
far away when their distance is measured along the edge as these will be
handled by another starting point. If a lattice point passes these tests, then
the thread processing it atomically allocates space for it in shared memory
and stores it there. If there is not enough room in shared memory for all
the lattice points, we can move on to the next step and revisit this one later
once we are done with the points we have just generated.

22

The final step is to “copy” the lattice points that we generated in the
previous stage and “paste” them around the starting lattice points along the
edge. This allows us to take a few points inside a small slice of a cylinder
and turn them into many points that surround the entire edge. We do this
by assigning one thread to each starting point. Each thread then iterates
over the lattice points from the last step (the ones that were relative to the
central point) and moves them so that they are now relative to the starting
point that the thread is processing. Almost all of these points will lie in
the actual cylinder around the edge, which means this part of the process is
very efficient. The threads then find the distances from the newly generated
lattice points to the edge and add them to the point data structure if the
distance is within the cutoff distance. Note that the first and last starting
points may need to also check for points that are beyond the edge of the
line. It is also worth noting that implementing the method in this fashion
may not work well for short edges. For example, if there are less than 32
starting points for an edge, then at least one warp will not be fully utilized.
However, some experimentation in splitting up the work so the threads now
iterated over starting point / lattice point pairs suggested that this approach
is more efficient.

2.4 Faces

Unlike our edges method, we decided to keep our faces method simple. While
it should be possible to only enumerate points that are above and below the
triangle face (we actually came up with at least one potential method to
do so0), the amount of work it would require to enumerate just those points
would likely outweigh the benefits of avoiding processing irrelevant lattice
points. Instead, we determined that a very lightweight point enumeration
scheme would actually run faster (and would be much easier to implement
and debug).

Like in our edges method, our faces method uses a bounding box ap-
proach to enumerate lattice points around the triangle. We do this by first
finding the normal to the triangle face. We then scale the normal vector so
that it is the length of the cutoff distance. With this normal, we can find the
six points that make up the prism that contains all the lattice points within
the cutoff distance of the face. To get the coordinates of the bounding box,
we simply take the min and max of the coordinates of all of the six points,
which results in two points at either size of the bounding box. From there,
we have the team iterate over every point in the bounding box. Each point

23

is checked to make sure it is directly above or below the triangle face and,
if so, its distance is calculated to the surface and recorded in the point data
structure.

24

Chapter 3

Examples

In this chapter, we present rendered outputs of the 3D distance fields pro-
duced by our code. We accomplished this by converting the point data struc-
ture generated by our program into a format compatible with Paraview, a
data visualization program often used for scientific computing.

3.1 Canister Mesh

The following figures show the results of converting Sean Mauch’s canister
mesh into a 3D distance field. In Figure 3.1, we can see the effects of changing
the cutoff distance on the mesh. When the distance is small, the differences
in distance between lattice points near the surface are more pronounced. For
significantly larger cutoff distances, the relative distances between lattice
points and the mesh are reduced and the points at the extremity of the
distance field have a more uniform color.

Figure 3.2 demonstrates the ability of the code to handle a wide range
of lattice extents. Lattices with smaller extents are faster to compute, but
come out very pixelated. Lattices with larger extents have much more detail,
but take up a lot of space. The Paraview file for the last distance field is
over 4GB in size.

25

0.00075

| 000025

0,000e+00

(a) Maximum distance of 0.001

0.001

70 000e+00

(b) Maximum distance of 0.002

= 0.001

—0.000e+00

(¢) Maximum distance of 0.004

Figure 3.1: Canister mesh processed with X, Y, and Z extents of 1000 points.
26

(a) X, Y, & Z extents of 100

0,003

£-0.001

(b) X, Y, & Z extents of 500

(¢) X, Y, & Z extents of 1500

Figure 3.2: Canister mesh processed with maximum distance of 0.004.

27

28

Chapter 4

Results

In this section, we attempt to characterize the performance of our code un-
der a variety of conditions and analyze how different parts of our methods
contribute to the overall run time of the distance field computation. Per-
formance times are only for the actual distance calculations on the canister
mesh (so time spent copying or zeroing data is not included, but time spent
building the distance field is). Each time is the average of three runs.

4.1 Scaling with Problem Size

Figures 4.1 and 4.2 show how the run time of the distance field calculations
varies with the cutoff distance and lattice extents (points along each axis).
Both trends are third order in nature, which makes sense because of the
three-dimensional nature of the problem (doubling the cutoff distance in-
creases the area around the mesh by roughly eight times and doubling the
extent of each axis increases the number of points by eight times). Sur-
prisingly, the relationship between cutoff distance and time was perfectly
characterized by the equation shown, which is often uncommon in perfor-
mance data. The parameterization of the relationship between extent and
time also closely matches the data.

Figures 4.3 and 4.4 show how the size of the generated point data struc-
ture scales with the cutoff distance and lattice extent. Note that data does
not need to be averaged as the code consistently generates the same distance
field for the same input. In the first figure, we can see that the size increases
almost linearly with cutoff distance. However, for the last cutoff distance,
we can see that the scaling is not truly linear. Perhaps this is because the
lattice points generated around each triangle are starting to overlap more

29

12

y = 3E+06x3 - 22180x? + 273.59x - 0.1561
R?=0.9999

10

Time (s)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Cutoff Distance

Figure 4.1: Time taken to generate distance field (with a lattice extent of
1000) vs. cutoff distance

3
2.5
y = 5E-10x3 + 3E-07x2 - 9E-05x + 0.071
R?=0.99831

2
=
]

£ 1.5
'_

1

0.5

0

0 200 400 600 800 1000 1200 1400 1600

X /Y /ZExtent

Figure 4.2: Time taken to generate distance field (with a cutoff distance of
0.004) vs. lattice extent

30

1400

1200

1000

800

Size (MB)

600
400

200

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Cutoff Distance

Figure 4.3: Size of the point data structure (with a lattice extent of 1000)
vs. cutoff distance

2000
1800
1600
1400
— 1200

1000

Size (MB

800
600
400

200

0 200 400 600 800 1000 1200 1400 1600
X /Y /ZExtent

Figure 4.4: Size of the point data structure (with a cutoff distance of 0.004)
vs. lattice extent

31

and less new points are being generated. In the second figure, we can see
that, at first, the size seems to increase exponentially. However, there is an
inflection point around a lattice extent of 1000 and the increase in size starts
to slow down. Since this data is more erratic, trendlines are not included in
the graphs.

4.2 Performance Breakdown

In Section 4, results were reported for the time it took to process the points,
edges, and faces in a mesh. However, we found that there were significant
differences between how much each method contributed to the total runtime.
In this section, we breakdown the performance of our method as a whole
into the performance of the point, edge, and face processing methods.
Table 4.1 shows how much each method contributes to the total run-
time. Point data structure size and run time are presented as percentages
of the result of performing all three methods. This data reveals a huge dif-
ference between the costs and contributions of each method. For instance,
processing the faces enumerates almost all the points in the final distance
field, but only takes about a fifth of the run time. However, processing the
edges generates fewer points than the processing faces stage, yet takes three
times longer. Processing points is probably the most balanced as it only
enumerates about a fifth of the points, but only takes about a fifth of the
run time. It is worth noting that the edges method should be generating
close to as many points as the faces method because the cutoff distance used
causes many of the points to overlap around the edges and faces. Data is also
available for pairs of methods since points generated by different stages often
overlap, which saves later stages from having to add them to the octree.

Table 4.1: Performance breakdown when processing the canister mesh with
a cutoff distance of 0.004 and X /Y / Z extents of 1500

Points | Edges | Faces | Percent Size | Percent Time
yes no no 22.87% 18.08%

no yes no 90.42% 62.81%

no no yes 98.37% 21.73%

yes yes no 90.47% 79.60%

yes no yes 99.01% 37.54%

no yes yes 99.97% 82.92%

yes yes yes 100.00% 100.00%

32

4.3 Compression

One nice feature of using octrees for representing the distance field on the
GPU is that they are very space efficient. In this section, we will compare
the size of our octree against the size of the final output files that are gen-
erated for Paraview. These output files mostly consist of the X, Y, and Z
coordinates of the lattice point and the distance to that point with a small
amount of metadata. Ideally, our GPU data structure would be a quarter
of the size of the Paraview data structure because it would only contain
distance data.

Table 4.2 shows how the sizes of the two data structures compare and
gives the compression ratio for the octree representation over the Paraview
one. In the first half of the table, we can see that the compression ratio
increases with cutoff distance (and thus the size of both data structures).
For larger cutoff distances, the compression ratio gets quite close to the
ideal ratio of 4x. The second half of the table contains data on how the data
structure sizes and compression ratio change with lattice extent. For the
smallest X /Y / Z extent, the octree representation does not help as much
(in fact, octree nodes likely take up more space than the actual distance
values in this case). For larger extents, the compression ratio is much higher
and generally increases with the extent. However, for the last two extents,
the compression ratio is much lower than expected.

Table 4.2: Compression ratios of different canister distance fields

Cutoff Dist. | Extent | Size on GPU | Size on disk | Compression
0.001 1000 97.3 MB 323.7 MB 3.3x
0.002 1000 176.4 MB 629.9 MB 3.6x
0.004 1000 335.3 MB 1,242 MB 3.7x
0.008 1000 654.8 MB 2,472 MB 3.8x
0.016 1000 1,161 MB 4,414 MB 3.8x
0.004 100 0.6 MB 1.0 MB 1.7x
0.004 250 6.0 MB 18.0 MB 3.0x
0.004 500 43.4 MB 146.9 MB 3.4x
0.004 1000 335.3 MB 1,242 MB 3.7x
0.004 1250 1,143 MB 2,511 MB 2.2x
0.004 1500 1,750 MB 4,044 MB 2.3x

33

4.4 Distance Field Data Structure and Atomics

In addition to the three major triangle primitive processing methods, the
data structure they all share is another potential factor in program perfor-
mance. In this section, we analyze two different ways using octrees and
atomics impact computation run times.

In order to quantify the impact of adding data to the octree (allocating
new nodes and atomically updating distance values), we ran our distance
field computation twice: once to initialize the data structure and once with
the data structure already initialized by the previous run. Since the first
run would fill out the entire data structure with the minimum distance to
each point, the second run would only have to enumerate points, calculate
distances, and traverse the octree only to find that the distance stored does
not need to be updated. We calculated how much slower the original com-
putation ran compared to the second run, which can be seen in the “Writing
Slowdown” column of Table 4.3. Note that a slowdown of 0% would indi-
cate no change in run time, a slowdown of 100% would indicate the original
program took twice as long to run and so on and so forth. As can be seen
in the data, the impact of having to add nodes and update values is biggest
for relatively small computations. Perhaps this is because the impact of
initializing high-level nodes is greater for smaller computations whereas this
cost is amortized in larger computations where more threads benefit from
them having been initialized earlier.

Table 4.3: Slowdowns due to adding data to the octree and accessing it in
general

Cutoff Distance | Extent | Writing Slowdown | Accessing Slowdown
0.001 1000 84.50% 121.14%
0.002 1000 45.10% 254.62%
0.004 1000 23.04% 498.46%
0.008 1000 15.56% 779.48%
0.016 1000 5.29% 1,449.70%
0.004 100 1,008.83% 3.25%
0.004 250 196.74% 45.06%
0.004 500 60.59% 163.41%
0.004 750 31.93% 351.32%
0.004 1000 23.04% 498.46%
0.004 1250 20.17% 766.33%
0.004 1500 17.32% 910.09%

34

We also attempted to quantify how much of an impact the data struc-
ture made as a whole. To do this, we disabled all accessing of the data
structure (threads weren’t even allowed to traverse it). Instead, we just had
the thread save the distances and lattice point indices to volatile variables,
which should prevent them from being optimized out of the computation
(this would also approximate the run time of the computation with a “per-
fect” data structure that could store data in the minimal amount of time).
We then compared the run times under these conditions to the original run
times by calculating the slowdown caused by having to traverse and add
data to the octree. These results are shown in the “Accessing Slowdown”
column of Table 4.3. Interestingly, unlike in the previous case, the slowdown
actually increases with problem size. However, this actually supports out
earlier theory: threads benefit from not having to add as much data in larger
computations, but still have to pay the price of traversing the data struc-
ture. However, this does not explain why the slowdown gets worse when the
lattice extent stays the same. Since traversing the data structure shouldn’t
take longer (because data is at the same depth), it is unclear why a larger
percentage of the time is spent traversing the data structure. Regardless,
this data shows that reducing the time it takes to traverse the distance field
data structure would significantly improve run times for computations.

35

36

Chapter 5

Conclusion

Accelerating 3D distance field calculations is becoming more relevant than
ever as researchers continue to add to the wide variety of applications for
them. However, the complexity and computational power required to gen-
erate these distance fields continues to grow as we are able to create increas-
ingly complex 3D models to process and demand higher fidelity outputs
than before. In this paper, we presented methods for taking advantage of
modern parallel hardware (GPUs) to efficiently accelerate these intense cal-
culations and analyzed their outputs and performance. While we found that
our methods were generally useful, we did identify some areas that could use
further improvement, which are discussed below.

5.1 Future Work

There are a few major tasks that deserve further consideration. Section 4.2
showed that the edges method has significant room for improvement (it runs
about 67% slower than the other two methods combined). However, another
major concern is the complexity of its implementation. Even my own code
is not perfect and likely fails to enumerate a few lattice points around the
ends of the edges. It would be very worthwhile to spend more time testing
other approaches to processing edges.

However, Section 4.4 suggests that developing better data structures
may have even more of an impact on performance than improving the edges
method. In the worst case, having to interact with an octree slowed down
computations by 15x, which is massive. One particularly interesting poten-
tial replacement for octree is a GPU-optimized implementation of Open-
VDB. OpenVDB has many of the benefits of octrees, but is able to reduce

37

access times by shortening the height of the tree through the use of a map
to find subnodes at the root level and by storing multiple data values in leaf
cells.

Finally, it would be nice to implement signed distance calculations and
support for the closest point transform. This could easily be done by gen-
erating pseudonormals for points and edges in a mesh preprocessing step.
Then the triangle primitive processing methods could determine whether
distances should be positive by taking the dot product of the pseudonormal
vector and the vector between the lattice point and corresponding point on
the surface. The closest point transform could then be added by saving
the corresponding point on the surface instead of throwing it away once the
distance calculations is complete.

5.2 System Configuration

All computations in this paper were performed on a computer with a Xeon
E5-2630 v2 CPU, Nvidia Tesla K20m, and 64GB of RAM. Code was com-
piled with optimization level 3 using GCC 4.7.4, Cuda 7.5.6, and a build of
Kokkos from June 2015. The canister mesh used in this paper can be found
in Sean Mauch’s stlib library, which is available at https://bitbucket.
org/seanmauch/stlib.

38

Bibliography

[BAOS]

[Gre07]

[Gue01]

[JBSO06]

[LvLO09]

[Mau00]

[Mau03]

J. Baerentzen and Henrik Aanees. Signed distance computation
using the angle weighted pseudonormal. In IEFEE Transactions
on Visualization and Computer Graphics, volume 11, pages 243
253, 2005.

Chris Green. Improved alpha-tested magnification for vector
textures and special effects. In ACM SIGGRAPH 2007 courses,
pages 9-18. ACM, 2007.

A. Guezlec. “meshsweeper”: dynamic point-to-polygonal mesh
distance and applications. In IEEE Transactions on Visualiza-
tion and Computer Graphics, volume 7, pages 47-61, 2001.

Mark Jones, J. Baerentzen, and Milos Sramek. 3d distance fields:
A survey of techniques and applications. In IEEE Transactions
on Visualization and Computer Graphics, 2006.

Leen Lenaerts and G. Harry van Lenthe. Multi-level patient-
specific modelling of the proximal femur. a promising tool to
quantify the effect of osteoporosis treatment. Philosophical
Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 367(1895):2079-2093, 2009.

Sean Mauch. A fast algorithm for computing the closest point
and distance transform. Technical report, California Institute of
Technology, 2000.

Sean Mauch. Efficient algorithms for solving static hamilton-
jacobi equations. PhD thesis, California Institute of Technology,
2003.

39

[PS06]

[SGG*07]

[SGGMO6]

[SOMO4]

[SP03]

[Wik13]

Ronald Peikert and Christian Sigg. Optimized bounding polyhe-
dra for gpu-based distance transform. In Scientific Visualization:
The visual extraction of knowledge from data, pages 6577, 2006.

Avneesh Sud, Naga Govindaraju, Russell Gayle, Erik Andersen,
and Dinesh Manocha. Surface distance maps. In Proceedings of
Graphics Interface 2007, pages 35—42, 2007.

Avneesh Sud, Naga Govindaraju, Russell Gayle, and Dinesh
Manocha. Interactive 3d distance field computation using linear
factorization. In Proceedings of the 2006 symposium on Interac-
tive 3D graphics and games, pages 117-124, 2006.

Avneesh Sud, Miguel Otaduy, and Dinesh Manocha. Difi: Fast
3d distance field computation using graphics hardware. In Com-
puter Graphics Forum, volume 23, pages 557-556, 2004.

Christian Sigg and Ronald Peikert. Signed distance transform
using graphics hardware. In Proceedings of IEEE Visualization
03, pages 8390, 2003.

Wikipedia. Octant (solid geometry) — Wikipedia, the free en-
cyclopedia, 2013. [Online; accessed 4-May-2016].

40

