
Pomona College
Department of Computer Science

WikidSimple: A Data-Driven Text Simplifier Using
Tree Transducers Trained on Wikipedia

Daniel Feblowitz

April 17, 2011

Submitted as part of the senior exercise for the degree of
Bachelor of Arts in Computer Science

Professor David Kauchak, advisor

Copyright c© 2011 Daniel Feblowitz

The author grants Pomona College the nonexclusive right to make
this work available for noncommercial, educational purposes, pro-
vided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission
of the author. To disseminate otherwise or to republish requires
written permission from the author.

Abstract

Automated text simplification has the potential to make doc-
uments accessible to a broader readership than they were
originally written for. In this paper, we introduce a data-
driven, syntax-based text simplifier that models this task as
an English-to-English translation problem. Based on a novel
corpus of aligned sentences from English and Simple English
Wikipedia, our system learns a probabilistic synchronous tree
substitution grammar, which is used as a tree transducer to
rewrite sentences as their most probable simplifications. Us-
ing BLEU score, we compare this system to a state-of-the-art
abstractive text compression program, as well as three other
phrase- and syntax-based text simplifiers. We find that our
program outperforms all but the phrase-based system, and
is cable of producing higher-scoring candidate outputs than
any other approach tested.

i

ii

Contents

Abstract . i
List of Figures . v
List of Tables . vii

1 Introduction 1

2 Background 3
2.1 Sentence Compression . 3
2.2 The Noisy Channel Model . 4
2.3 Refined Generative Models 5
2.4 Discriminative Models . 6

3 Program Description 11
3.1 Synchronous Grammars . 11
3.2 Tree Alignment . 14
3.3 Grammar Extraction . 15
3.4 Grammar Augmentation . 18
3.5 Decoding and Reranking . 21

4 Evaluation 23
4.1 Experimental Setup . 23
4.2 Results . 25

5 Conclusions 31
5.1 Future work . 32

Bibliography 33

iii

iv

List of Figures

3.1 A pair of aligned trees from sentences in our Wikipedia cor-
pus. Boldface VPs represent an alignment not expressible by
an SCFG. 13

3.2 A pair of tree fragments . 16
3.3 Tree fragments with variables in place of aligned subtrees. . . 16
3.4 Pseudocode for the extract algorithm, adapted from [CL09] . 18
3.5 Parent-annotated version of the traditional tree fragment from

Figure 3.3 . 19
3.6 Another pair of tree fragments 20

v

vi

List of Tables

3.1 The maximally general STSTG rule set for the trees in Fig-
ure 3.1 . 17

4.1 BLEU, Oracle score, mean length ratio, and mean percentage
of inputs unmodified for all systems tested, with mean values
from training corpus. 26

4.2 Comparison of sample outputs for all systems tested. 28

vii

viii

Chapter 1

Introduction

Simplified versions of texts make information available to a broader audi-
ence. For instance, while the concepts presented in a research journal article
might be accessible to readers without expertise in a given scientific field,
the complex vocabulary and syntax of these articles can render them incom-
prehensible. Science articles in the popular media adapt the language of the
original texts in a way that opens their content to many more readers.

Other simplified texts are used to tailor existing works to early readers
and foreign-language students, introducing them to the content of the origi-
nals while allowing them to develop their reading skills [PO07]. In this spirit,
the Wikimedia Foundation recently introduced Simple English Wikipedia,
a site designed to render the information in Wikipedia in more accessible
terms. According to Wikipedia’s internal entry on the wiki, it serves “peo-
ple with different needs, such as students, children, adults with learning
difficulties and people who are trying to learn English. Other people may
use the Simple English Wikipedia because simple language helps them to
understand unfamiliar topics or complex ideas.” [Ano11b]

Producing simplified texts currently requires the labor of human edi-
tors with an understanding of both the source material and how to ex-
press complex thoughts in a simple vocabulary. The articles in Simple En-
glish Wikipedia, for instance, are maintained by over 170,000 registered
users [Ano11b]. Even with this large a community supporting it, Simple
Wikipedia has less than 2% of the number of articles in the general En-
glish Wikipedia. [Ano11c] [Ano11a] However, the last few decades have
seen editorial tasks similar to text simplification, like language translation
and summarization, being automated with increasing success.

Data-driven methods from these tasks can be readily adapted to the

1

problem of text simplification. In this paper, we approach text simplifica-
tion as a form of translation from English to a simplified subset of English.
We infer the correspondence between these languages from a novel corpus of
aligned sentences from English Wikipedia and Simple English Wikipedia.
This corpus, the largest ever assembled for the text simplification task
[CK11], contains 137,000 sentence pairs. A pair of these sentences can be
viewed as two representations of the same content, transformed from one
language to another through a set of edit operations including insertion
and deletion of words, reordering, substitution, and word changes. Using
a grammar formalism expressive enough to capture the full range of these
operations, we train a generative text simplification system on this corpus.

Our approach begins from the parse tree of each sentence as given by a
statistical parser [PK07]. We pair the nodes of aligned trees based on their
word span and a word-level alignment of their respective sentences. From
each node-aligned tree pair, we extract a set of synchronous tree substitution
grammar (STSG) rules that, when used as a transducer, can rewrite the
traditional English parse tree into the parse tree of the corresponding simple
sentence. We combine these into a single probabilistic grammar with weights
obtained by maximum likelihood estimation. We annotate this grammar in
several ways to improve its specificity, and combine the different levels of
annotation in a simple backoff model. We then generate the 10,000 most
likely trees in each grammar and adjust their ranking based on language
models and a length penalty to return a single best simplification.

Using BLEU [PPR+02], a standard evaluation metric from machine
translation, we test the performance of this system against several others.
These include T3 [CL09], an abstractive text compression system using the
same robust grammar formalism and discriminative learning, as well as a
phrase-based system employing an approach that has been successful in ma-
chine translation and does not require syntactic information. [KHB+07]

This paper is laid out as follows: Chapter 2 describes the development
of methods for the text simplification task and the related problem of text
compression. Chapter 3 describes the specific strategy implemented by our
program and its theoretical basis. Chapter 4 covers the experiments we
conducted to compare this system against several others, and conclusions
are drawn from the results in Chapter 5.

2

Chapter 2

Background

2.1 Sentence Compression

The earliest approaches to automated text simplification were rule-based
systems for assisting aphasic readers [CTAC00, CMC+98], generating sum-
maries [Mah97, JM00], and preprocessing text for other NLP tasks [CS97].
Interest in text simplification accelerated following [KM02], which formal-
ized the problem, proposed the first data-driven approaches, and introduced
the corpus and evaluation metrics that would become standard in later ex-
periments. Knight and Marcu define a restricted version of the simplification
task called “sentence compression,” which requires simplified sentences to be
produced by deleting a subsequence of the original sentence’s words. They
seek compressions that are shorter than the original sentence, retain as much
information as possible, and remain grammatical.

Knight and Marcu approach sentence compression as text-to-text gener-
ation problem similar to machine translation – it is analogous to translat-
ing sentences from English to the language of compressed English. Knight
and Marcu’s work and subsequent research have adopted techniques that
have been successfully applied in machine translation. Among these are the
noisy-channel model [BPPM93], the alignment template method for word
alignment [ON04], synchronous grammars [Shi04, Chi06], and the use of
discriminative learning [McD06, CL07].

Recent work by Cohn and Lapata [CL08] extends the definition of sen-
tence compression beyond the deletion-only model, which they refer to as
“extractive” sentence compression. Cohn and Lapata define “abstractive”
sentence compression to allow reordering, substitution, and insertion in ad-
dition to deletion.

3

Our approach to text simplification is based on abstractive compression.
It employs the same group of edit operations, and shares the requirement to
preserve the grammaticality and information content of the input. However,
it differs from compression in its goal – it aims to produce text that it easier
to understand rather than just shorter. This can involve deleting complex
words or syntactic structures, or replacing them with simpler content, even
if it lengthens the sentence.

2.2 The Noisy Channel Model

In addition to defining the sentence compression task, Knight and Marcu
develop two different systems to carry it out. Both of their approaches are
data-driven and operate on the syntax trees of input sentences. The first of
the two models trains a decision tree for an extended shift-reduce parser that
rewrites its input into a compressed form. The other, which has provided
the basis for a great deal of subsequent research, applies a noisy channel
model to the sentence compression task.

Knight and Marcu offer the following generative story to illustrate this
model: a news editor composes a document in short sentences and passes
it to a writer to “flesh it out.” The writer does so by adding a number
of extra words to each sentence — the noise in the model’s channel. The
compressor’s task is then to reconstruct the original short sentences given
only the padded results.

This decomposes into three smaller problems. The first is to determine
a source model (i.e., language model), which assigns every string s a proba-
bility P (s) representing the likelihood that s is the original short sentence.
The second is to provide a channel model, or translation model, which maps
each string pair (s, t) to a probability P (t|s) that s will be expanded to t
during the “fleshing-out” process. The remaining task is that of decoding
— that is, given a long string t as input, finding the short string s that
maximizes P (s|t). This is equivalent to maximizing P (t|s) ∗ P (s).

For their source model, Knight and Marcu train a probabilistic context-
free grammar (PCFG) on the Penn Treebank and a bigram language model
on the Wall Street Journal corpus. They calculate P (s) by multiplying the
probabilities of each bigram in s and each PCFG rule in the derivation of s.

Their channel model is a weighted synchronous context-free grammar
(SCFG). SCFGs consist of paired CFG rules that are applied in parallel
to aligned nonterminals, deriving a pair of recursively related parse trees
[Chi06]. Though SCFGs cannot delete nodes, they can expand nonterminals

4

to the terminal symbol ε, effectively removing them from the resulting tree’s
yield — the string that can be read off of its leaves [Chi06]. Knight and
Marcu estimate weights for their SCFG rules based on frequency counts from
a parsed, aligned corpus. To align nodes between parse trees, they employ
a simple method that matches a source and target subtree when they share
the same root symbol and the source’s children are a subsequence of the
target’s.

For decoding, Knight and Marcu store all possible compressions of the
input sentence in a packed forest structure and extract the highest-scoring
tree at each of several compression rates. This model has an inherent ten-
dency to favor the shortest compression, since shorter compressions involve
fewer rules and bigrams, and multiplying in each additional rule probability
lowers the overall score. To counteract this, they normalize the score of each
sentence by its word length before outputting a single best compression.

2.3 Refined Generative Models

In order to compensate for the scarcity of available training data, Knight
and Marcu make the simplifying assumption that the probability of a string
being a valid short sentence, P (s), is equal to that string’s probability as an
English sentence in general. This allows them to train their source model
on the full Penn Treebank, rather than only the short sentences from their
training corpus. However, as Turner and Charniak [TC05] point out, this
assumption causes the model to strongly favor outputting uncompressed
sentences, and it is only by weighting in favor of short sentences that the
system performs any compression at all. To counteract this effect, they
train a syntactic language model, and use it to calculate the probability that
adding the deleted subtrees back into the short sentence will recreate the
original. They use this in place of the source model. Turner and Charniak
also contribute unsupervised and semi-supervised training methods to cope
with data sparsity, but they ultimately conclude that the noisy channel
model per se is not suitable for this task due to its tendency to reproduce
the original sentence.

Galley and McKeown [GM07] offer a number of improvements to Knight
and Marcu’s model. In the first place, they avoid the above problem by seek-
ing to maximize P (s|t) directly rather than breaking it down into P (t|s) ∗
P (s). This can be done using only a trained SCFG – the most likely com-
pressed tree is the one derived by the highest-scoring set of rules that syn-
chronously produce the uncompressed input tree. Sentence probabilities are

5

obtained by summing the probabilities for all trees with the same yield.
Galley and McKeown’s modifications to the model also include meth-

ods for estimating more accurate rule probabilities. Lexicalization pro-
duces finer-grained rules by annotating each node with the underlying head
word and/or its part of speech. Head-driven Markovization compensates
for the sparsity introduced by flat Penn Treebank trees by making an n-
order Markov assumption around the head of each rule. That is, rather
than conditioning on the full right-hand side production, a Markovized rule
conditions on only the parent node and the n children closest to the head.
Parent annotation increases the specificity of rules by marking nodes with
the category labels of one or more ancestors.

Optimal parameters for these adjustments are determined during an au-
tomatic evaluation stage using Simple String Accuracy (SSA). The authors
find the best results using interpolated Witten-Bell smoothing, conditioning
on one additional node of context both around the head and above the par-
ent, and all possible lexicalization. However, the improvements from both
Markovization and parent annotation are slight, and the authors do not
compare against a model that includes all horizontal context, which would
be the default without Markovization. Further, SSA is a similar metric to
word-level accuracy, which Clarke and Lapata [CL06] later show not to cor-
relate with human judgements of compression quality. It is therefore unclear
whether these are actually the best possible settings [Pit10].

Galley and McKeown’s model also includes a novel method for parse tree
alignment, using an approximation algorithm to choose the alignment that
minimizes edit distance between the trees. Despite using SCFGs, they are
able to capture some tree adjunction operations by allowing nodes on the
compressed side to copy themselves into pairs of adjacent nodes that can
then be expanded using two separate CFG rules. These operations allow
them to align 25% of the abstract sentences in Knight and Marcu’s Ziff-
Davis corpus, while Knight and Marcu themselves were able to align only
1.75%. With the parameters set to the values determined above, Galley and
McKeown’s system outperforms Knight and Marcu’s in human judgements
of grammaticality and importance, even while compressing at a higher rate.

2.4 Discriminative Models

McDonald [McD06] takes a substantially different approach. Rather than
define a grammar from the training data, McDonald extracts features from
training sentences and weights them using discriminative learning. These

6

features are based on sentences’ constituent and dependency parses, part-
of-speech tags, bigrams, and unigrams. Thus, a degree of tolerance for noisy
parses is built in – if incorrect syntactic features are harming performance,
the learning algorithm should decrease the weight assigned to them. Mc-
Donald chooses features that decompose over sequential words in the output,
allowing a search for the optimal compression using dynamic programming.
For learning, he employs the Margin Infused Relaxed Learning Algorithm
(MIRA) with a loss function based on word-level accuracy, which, as previ-
ously noted, does not necessarily correlate with human judgements [CL06].

Nomoto’s Generic Sentence Trimmer (GST) [Nom08] employs a similar
setup but adds restrictions derived from a dependency parse to constrain
the space of possible compressions. Using a heuristic based on the depth in
the parse tree and the inverse document frequency (IDF) of deleted words,
Nomoto conducts an N-best search over the allowable compressions. This is
intended to find those compressions that preserve the most relevant parts of
the sentence. This list is pruned using hard-coded, language-specific rules,
and then converted into features for re-ranking by conditional random fields
(CRFs).

Both of these methods are designed for deletion-only sentence compres-
sion and cannot be readily extended to the abstractive summarization or
simplification tasks. McDonald’s must optimize over all possible compres-
sions, the number of which is exponential within the deletion model but in-
finite if insertions or substitutions are allowed. Nomoto’s dependency paths
restrict the size of this set, but limit possible compressions to a subset of
the subsequences of the original sentence. Though GST achieves better per-
formance than more complicated models, even when training on data that
is not deletion-only [Nom09], it is not appropriate for our goal of full text
simplification.

2.4.1 Tree Transducers for Non-Deletion Edits

The deletion model employed by Knight and Marcu, Turner and Charniak,
McDonald, and Nomoto cannot realize the full range of operations required
for summarization or simplification. This is supported by research from
Marsi et al. [MKHD10], who constructed a corpus of Dutch-language sub-
title/full text pairs, and found that within it, only 16.11% of subtitles were
subsequences of their original sentences. Even some constituent deletions
permitted by the deletion-only model require multi-level changes to tree
structure that cannot be expressed by SCFGs. Galley and McKeown narrow
this gap with their improved alignment methods and simulated tree adjunc-

7

tion. However, capturing the full set of edit operations requires the adoption
of a more robust grammar formalism. Cohn and Lapata’s “Tree Transducer
Toolkit” (T3) [CL09] is based on one such formalism. It combines a large-
margin discriminative approach like McDonald’s with a synchronous tree
substitution grammar (STSG) [Chi06], an expressive grammar that can be
used to insert subtrees, change words, and both reorder and delete con-
stituents.

Unlike CFGs, which expand nonterminal symbols into sequences of ter-
minals and nonterminals, TSGs expand nonterminals into structured parse
tree fragments. STSG derivations can then recursively continue from aligned
nonterminals at the leaves of each fragment. The additional structure repre-
sented in these fragments allows STSGs to capture multi-level alignments, as
well insertions and more complex substitutions than can be modeled using
SCFGs.

Starting from a parsed, word-aligned corpus of sentence pairs, T3 learns
a constituent alignment based on the alignment template method of Och
and Ney [ON04]. Their method defines two nodes to be aligned if at least
one word under each node is aligned to a word in the yield of the other and
no word under either node is aligned to a word that is not under the other.

Based on these alignments, T3 uses a top-down algorithm to extract the
minimal set of STSG rules describing each tree. These rules are generalized
by replacing subtrees with variables, and the minimal set includes no rules
that can be generalized further without violating the word alignment. At
runtime, copy rules are derived from the input to cover structures that have
not been seen in training. The rules induced over the entire corpus, along
with these copy rules, constitute a grammar that generates the set of all
possible compressions.

Each STSG rule is converted to a vector of features representing syntac-
tic, lexical, and compression-specific information. These features are used
to train a structured SVM, which attempts to separate the correct structure
from the rest of the training set with a large margin. The SVM rescales
its slack variables using a loss function based on a compression’s Hamming
distance from a gold standard sentence.

T3’s decoding phase uses a dynamic program to find the highest-scoring
derivation of the input tree. A derivation’s score can be calculated by adding
the scores of each rule involved and the score assigned to each n-gram in the
yield by an n-gram language model. The score of a single rule is the sum
of its features weighted by the vector learned in SVM training. Because the
rules are synchronous, the highest-scoring set of rules that derives the input
simultaneously derives the best compression. The decoding algorithm fills

8

a three-dimensional chart, with backpointers, containing the best-scoring
partial derivation. Each cell C[v, t, l] in the table contains the best derivation
transducing a tree rooted at node v to a tree with root t and terminal n-
gram context l. The algorithm iterates over the source tree in postorder,
computing the set of possible partial derivations and storing the result in the
chart. To limit the complexity of this search, Cohn & Lapata use a beam
search and cube pruning [CL07].

This differs from McDonald’s approach in several significant ways. First,
McDonald’s system does not rely on an acquired grammar to define the space
of possible outputs. Instead, it limits itself to deletion only and searches
over all subsequences of the input. T3, on the other hand, considers only
outputs licensed by its grammar. In practice, this is a much greater set
of possibilities, since this grammar is capable of reproducing any insertion
or substitution extracted from the training corpus. T3 also differs from
McDonald’s system in its choice of features, learning algorithm, and loss
function.

The source code for T3 is available online (http://staffwww.dcs.shef.
ac.uk/people/T.Cohn/t3/), and several other researchers have published
experimental results with it. Nomoto compares the dependency-path-based
GST [Nom09] to T3 on a corpus of sentence summarizations from New York
Times RSS headers and the corresponding articles. He finds that GST out-
performs T3 in human ratings of intelligibility and representativeness, scales
that correspond to Knight and Marcu’s original measures of grammaticality
and importance [KM02]. He also notes a tendency in T3 to introduce un-
related material from its training set into its compressions, and speculates
that it is ill-suited to corpora not designed specifically for the deletion-only
task.

Marsi et al [MKHD10] also test T3 on their Dutch subtitle corpus.
Though they perform no formal evaluation, they report observing the same
tendency to insert unrelated material. They also mention instances of T3
violating agreement constraints, dropping required arguments, and elimi-
nating or incorrectly replacing function words. Further, they find that if
T3 is not allowed to derive back-off rules from the test data and retrain its
classifier at test time – a step they deem to be prohibitively expensive – it
is only able to produce output for 7% of input sentences.

9

10

Chapter 3

Program Description

We model text simplification as tree-to-tree transduction based on an STSG
acquired from a parsed parallel corpus. We implement modified versions of
Cohn & Lapata’s [CL09] tree alignment and grammar extraction algorithms
in order to acquire a probabilistic STSG from our training corpus. This
grammar is used to define a weighted finite tree-to-tree transducer to which
each input tree is applied, giving a weighted regular tree grammar. We
generate the 10,000 most likely trees in this grammar, and rerank them
using two n-gram models and a length penalty. The yield of the top-scoring
tree is output as the simplification of the input sentence.

This chapter describes the workings of the program in detail. Section 3.1
explains the STSG formalism and its use in tree transduction. Sections 3.2
and 3.3 discuss the algorithms used for tree alignment and grammar extrac-
tion. Section 3.5 covers the decoding and reranking stages.

3.1 Synchronous Grammars

3.1.1 SCFGs

Syntax-based sentence compression systems like those of Knight and Marcu
[KM02] and Galley and McKeown [GM07] model the tree-to-tree rewrit-
ing problem using what is essentially a synchronous context-free grammar
(SCFG). SCFGs resemble CFGs, but simultaneously generate pairs of recur-
sively related strings rather than single strings [Chi06]. They can be used for
synchronous parsing, but here we focus on their application to translation.
Whereas a CFG may have a rule of the form

S→ NP VP

11

an SCFG rule takes the form

S→ 〈NP1 VP2 , NP1 VP2〉,

Where the subscripts on nonterminals represent alignment.
A CFG production replaces the nonterminal symbol on its left-hand side

with the string of terminals and nonterminals on its right. Likewise, one
SCFG production replaces a single nonterminal in the source string and a
single nonterminal in the target string. These nonterminals must be aligned,
and they must be the same symbol as the left hand side of the rule. Applying
the rule expands the nonterminal in the source string to the sequence on the
left of the rule, and the nonterminal in the target string to the sequence on
the right of the rule. Thus, if the production

VP→ 〈V1 NP2 , NP2 V1〉

is applied to the string pair

〈NP1 VP2 , NP1 VP2〉,

it is expanded into

〈NP1 V3 NP4 , NP1 NP4 V3〉.

Here, variable indices are changed to avoid unintended capture. [Chi06]
SCFGs are only capable of reordering and relabeling nodes [Chi06]. For a

grammar to be used for sentence compression or text simplification, it must
also be able to perform deletions. This can be accomplished by the inclusion
of an empty string symbol ε in the grammar’s alphabet of terminals. Nodes
are deleted by special productions that expand all preterminals underneath
them to ε [Pit10].

SCFGs are not flexible enough to capture a number of the edit operations
needed for text simplification. Since they are limited to reordering and
relabeling nodes, SCFGs cannot insert new constituents. Also, since SCFG
productions only involve a parent nonterminal and its immediate children,
they cannot represent alignments that span more than a single level of tree
structure. For instance, in the pair of aligned trees shown in Figure 3.1,
the two VPs written in boldface are aligned to each other under our learned
constituent alignment. The top-level S nodes are also aligned. However,
since an SCFG production can only contain a parent node and its immediate
children, and since the VP in the simple tree is a child of the S, but the VP
in the traditional tree is a grandchild of the aligned S, there is no SCFG rule
that can derive this structure with the correct alignment.

12

S

NP

NNS

jackals

VP

MD

may

ADVP

RB

occasionally

VP

VB

assemble

PP

IN

in

NP

JJ

small

NNS

packs

S

ADVP

RB

sometimes

,

,

NP

NNS

jackals

VP

VB

join

NP

JJ

small

NNS

packs

Figure 3.1: A pair of aligned trees from sentences in our Wikipedia corpus.
Boldface VPs represent an alignment not expressible by an SCFG.

13

3.1.2 STSGs

Chiang [Chi06] discusses the strategy of eliminating this problem by flatten-
ing trees with multi-level alignments. However, this causes a loss of struc-
tural information. An alternative described by Chiang and implemented in
a sentence compression setting by Cohn and Lapata is to use the more ex-
pressive Synchronous Tree Substitution Grammar (STSG) formalism [CL07]
[Chi06].

Rather than replacing nonterminals with strings of terminals or nonter-
minals, as in SCFG productions, STSG productions replace nonterminals
with tree fragments called elementary trees. The leaves of an elementary
tree can be either terminals or aligned nonterminals. Thus, STSG produc-
tions allow the replacement of aligned nonterminals with arbitrarily deep
tree structures. This allows them to derive many aligned trees inexpressible
with SCFGs. For instance, the boldface VPs in Figure 3.1 can be syn-
chronously derived with the following STSG rule:

〈S, S〉 →
〈S(NP0 VP(MD(may) ADVP(RB(occasionally)) VP1)), S(ADVP(RB(sometimes)) ,(,) NP0 VP1)〉

In addition to enabling multi-level alignments, STSGs also allow new
nodes to be inserted. This is accomplished by expanding a nonterminal
higher up in the tree to a tree fragment that includes the new nodes. For
instance, the above rule simultaneously inserts the MD headed by “may”
and the ADVP headed by “occasionally” on the source side and the ADVP
headed by “sometimes” on the target side.

Either form of synchronous grammar can be used as a tree transducer.
Rather than expanding a pair of nonterminals into elementary trees, in a
transduction setting the rules of the grammar read one elementary tree and
rewrite it as the other tree of the pair. As in synchronous derivation, trans-
duction then continues recursively on the nonterminal leaves. The resulting
transducer can rewrite any source tree in the grammar as the target tree
that would be synchronously derived [CL09].

3.2 Tree Alignment

Our program trains on a set of pairs of parsed, word-aligned sentences from
a bitext. The word-level alignments for each sentence pair are lists of integer
pairs giving the position in the sentence of aligned words. We implement
Cohn & Lapata’s [CL09] constituent alignment algorithm to infer a node-
level correspondence from these indices. A pair of parse tree nodes are

14

aligned if all nodes under each are either aligned to a node under the other
or unaligned. Cohn & Lapata formalize the definition of constituent align-
ment as a set C of all node pairs (vt, vs) such that there exists a pair of
words (t, s) in the word-level alignment with t occurring in the yield of vt
and s occurring in the yield of vs, and there is no pair (s, t) in the word
alignment with only one of s or t in the yield of its respective node. Cohn
and Lapata define constituent alignment in set notation, with A represent-
ing the word alignment and Y a yield operator that returns the indices of
all words spanned by a given node, specifically:

C = {(vt, vs)|(∃(t, s) ∈ A∧t ∈ Y (vt)∧s ∈ Y (vs))∧(¬∃(t, s) ∈ A∧t ∈ Y (vt)⊕s ∈ Y (vs))}

We add one additional stipulation to the original definition. We require
that if a node b with and its parent a are both aligned to a node z and its
parent y, the alignment retain only the pairs (a, y) and (b, z). This elimi-
nates a common occurrence where too many associations are made between
a pair of preterminal nodes and their children. Under the original definition,
the following subtrees would contribute four node pairs to the alignment:

VB

assemble

VB

join

Specifically, the pairs (VB, VB), (assemble, join), (VB, join) and (VB, as-
semble) meet the criterion for inclusion. Our revised definition eliminates
the latter two pairs. This reduces the size of the alignment, decreasing the
number of cases which must be checked during grammar extraction while
preserving the intuitive correspondence between similar nodes.

3.3 Grammar Extraction

Once a pair of input trees have been aligned, the next step is to extract a set
of STSG rules that can simultaneously derive them. Used as a transducer,
these rules will be able to completely rewrite the traditional tree into the
simple tree.

Because STSG rules can have arbitrary depth, the rules we extract from
aligned tree pairs can vary greatly in specificity. For instance, given the pair
of aligned trees in Figure 3.1, it would be possible to extract a single STSG
rule that derives both trees in their entirety in one step. This rule would not
be particularly useful during transduction — in order to apply it, we would
have to see the entire first tree as a subtree of an input, and as a result it

15

would be converted completely to the second tree. A rule producing smaller
fragments, like this pair:

VP

VB

assemble

PP

IN

in

NP

JJ

small

NNS

packs

VP

VB

join

NP

JJ

small

NNS

packs

Figure 3.2: A pair of tree fragments

would be more useful in a transduction setting, as it could apply to a wider
variety of inputs. A rule becomes even more general if aligned subtrees
are replaced with linked variable nodes. For instance, substituting variable
nodes for the subtrees (VB assemble) and (VB join), and both instances of
(NP (JJ small) (NNS packs)) in the above tree fragments gives the following
pair:

VP

VB0 PP

IN1 NP2

VP

VB0 NP2

Figure 3.3: Tree fragments with variables in place of aligned subtrees.

By dividing a pair of trees into the smallest segments that respect the
constituent alignment, and replacing all aligned subtrees with variable nodes,
it is possible to extract what Cohn and Lapata [CL09] refer to as the max-
imally general rule set for the pair. This set of rules is capable of syn-
chronously deriving the original pair, but is also applicable to the greatest
breadth of possible input trees. The maximally general rule set extracted
from the input tree pair in Figure 3.1 is given in Table 3.1.

In order to extract the maximally general rule set from an aligned pair
of input trees, we implement the extract algorithm described in [CL09].
Pseudocode for extract is given in Figure 3.4. This algorithm takes as input
the roots of two trees and the constituent alignment. It maintains a frontier
alignment, a set of pairs of nodes that will be replaced with common variables

16

〈S, S〉 → 〈S(NP0 VP(MD(may) ADVP(RB(occasionally))) VP1),
S(ADVP(RB(sometimes)) ,(,) NP0 VP1)〉

〈PP, PP〉 → 〈PP(IN0 NP1) , NP1〉
〈NP, NP〉 → 〈NP(NNS0) , NP(NNS0)〉
〈VP, VP〉 → 〈VP(VB0 PP1) , VP(VB0 PP1)〉
〈VB, VB〉 → 〈VB(assemble) , VB(join)〉
〈JJ, JJ〉 → 〈JJ(small) , JJ(small)〉
〈NNS, NNS〉 → 〈NNS(packs) , NNS(packs)〉
〈NNS, NNS〉 → 〈NNS(jackals) , NNS(jackals)〉

Table 3.1: The maximally general STSTG rule set for the trees in Figure 3.1

in the rule produced by the current call. It proceeds through the nodes
of the traditional tree in preorder. For each aligned node of the tree, it
nondeterministically chooses the corresponding simple tree node that results
in the maximally general rule set for that subtree.

Upon choosing a match for the current node, the algorithm makes a
recursive call on the subtrees rooted at this pair. When this call returns, it
adds the selected node pair to a frontier alignment for the current call and
removes all tree structure underneath both nodes. If a node is the root of
a completely unaligned subtree, all nodes underneath are removed without
a recursive call, and that node is paired with ε in the frontier alignment,
signifying that it will be deleted. Once iteration completes, the algorithm
adds a rule that expands the two trees’ roots to the undeleted remainder
of each tree, with pairs of frontier-aligned nodes replaced with common
variables. The top-level call returns the maximally general rule set.

The nondeterministic choice mentioned above is accomplished by means
of a pair of mutually recursive methods. One method saves the state of both
trees, and passes control to the other. This method iterates through the set
of nodes aligned to the current node, choosing each in turn, and proceeding
to recurse on the subtrees rooted at that pair. When this recursive call
returns, the size of the extracted rule set is checked against the largest set
seen so far. If the current choice of node did not result in a larger rule set,
the changes are rolled back, and that choice is forgotten. Otherwise, the
rule set and changes to the trees are retained. Ultimately, the algorithm
acts upon only the choice that resulted in the largest set of rules.

Because of the computational expense involved in the nondeterministic
choice of aligned nodes, we configured our program to reject any input for
which rule extraction took longer than a predetermined time. For example,

17

extract(t, s, A,R): extracts minimal rule set from trees t and s with con-
stituent alignment A into set R

F ← ∅ {initialize frontier alignment F to empty set}
for all nodes vt in tree rooted at t, in preorder do
if t is aligned to some node(s) under s then

choose node vs
R← extract(vt, vs, A)
F ← F ∪ (vt, vs)
delete children of vt
delete children of vs

else if all nodes in subtree rooted at vt are unaligned then
F ← F ∪ (vt, ε)
delete children of vt

end if
end for
R ← R ∪ (〈root(t), root(s)〉 → 〈t, s, F 〉) {Add new rule to minimal rule
set.}
return R

Figure 3.4: Pseudocode for the extract algorithm, adapted from [CL09]

setting this threshold at 2 minutes resulted in the abandonment of only 311
out of the 110,000 sentence pairs in the training corpus.

3.4 Grammar Augmentation

Providing more general rules can be both a help and a hindrance in trans-
duction. Highly general rules allow the resulting transducer to handle more
potential inputs, but can also result in unwanted transformations. For in-
stance, applying the rule from Figure 3.3 to the the subtree VP(VB PP(IN
NP)) transforms it to VP(VB NP). If this rule were applied to an unseen
phrase that matches this structure, for instance “eat in the cafeteria”, it
could produce a malformed output like “eat the cafeteria”.

This problem can be mitigated by adding some more specific rules back
into the rule set, allowing the system to prefer transformations that are at-
tested in the training set, and generalize only when better information is
not available. Cohn and Lapata [CL09] accomplish this by incorporating
rules of varying depth, allowing their extraction algorithm to make the ad-
ditional nondeterministic choice to continue recursing on aligned subtrees.

18

We adopt a different approach, applying within the STSG framework several
of the annotations shown to improve SCFG-based sentence compression by
Galley and McKeown [GM07]. Specifically, we implement parent annotation
and head-lexicalization using both the head word and its part of speech.

3.4.1 Parent Annotation

Extracting shallower rules provides better generality but reduces the amount
of structural information contained in each rule. Many rules will manifest
some of the same problems seen with SCFGs. A simple way to build more
structural information back into these rules is to condition on the label of
each node’s parent as well as the label of the node itself. With parent
annotation, the traditional tree fragment in Figure 3.3 is rewritten as:

VPˆADVP

VBˆVP0 PPˆVP

INˆPP1 NPˆPP2

Figure 3.5: Parent-annotated version of the traditional tree fragment from
Figure 3.3

Rather than applying to any input subtree of type VP(VB PP(IN NP)),
the resulting rule will now only match this structure when it occurs as a
child of an ADVP. Thus, a VP of this shape directly under the root symbol
S, which is likely a larger and more important subtree of the input with
different properties than the training instance, will not be transformed by
this rule.

3.4.2 Lexicalization

Another way of obtaining more specific rules is to tag each node with the
lexical head underneath it. This allows our grammar to differentiate be-
tween subtrees with the same overall structure but different words at the
leaves. Suppose in training our system had observed both the tree pair from
Figure 3.2 and the tree pair shown in Figure 3.6.

Without lexicalization, the system would observe instances of the rule

〈VP,VP〉 → 〈VP(VB0 PP(IN1 NP2)), VP(VB0 NP2)〉

19

VP

VB

eat

PP

IN

in

NP

DT

the

NNS

cafeteria

VP

VB

eat

PP

IN

in

NP

DT

the

NNS

lunchroom

Figure 3.6: Another pair of tree fragments

from both, and if the phrase “eat in the cafeteria” appears as input, it will
be incorrectly transformed as described above. However, with lexicalization,
the system would learn both the rule

〈VP[assemble],VP[join]〉 →

〈VP[assemble](VB[assemble]0 PP(IN[in]1 NP[packs]2)), VP[join](VB[join]0 NP[packs]2)〉

and the rule

〈VP[eat],VP[eat]〉 →

〈VP[eat](VB[eat]0 PP(IN[in]1 NP[cafeteria]2)), VP[eat](VB[eat]0 PP(IN[in]1 NP[lunchroom]2))〉,

applying only the rule appropriate in the context of the input sentence.
A downside of lexicalization is that it requires a different rule for every

combination of head words. This results in a large, sparse rule set that is
capable of making specific predictions but has comparatively poor coverage
of the space of possible inputs.

A middle ground is to tag nodes with the part of speech of the head word
rather than the word itself. This results in rules that are more specific than
unannotated rules, but provide better coverage than fully lexicalized rules.

3.4.3 Probability Estimation and Copy Rules

In order to have both good coverage of possible inputs and specific rules, we
train a four-level backoff model using varying degrees of annotation. At the
highest backoff level, rules are augmented with parent annotation and both

20

kinds of lexicalization. The subsequent levels drop, in order, word-level lexi-
calization, part of speech-level lexicalization, and parent annotation, leaving
the unannotated grammar at the lowest level.

We train this model using maximum likelihood estimation over our train-
ing corpus. Each backoff level learns the probability distribution over every
traditional tree fragment observed at its level of annotation. The probability
of rewriting a traditional tree t into a simple tree s is estimated as

P (s|t) =
count(s ∧ t)
count(t)

.

If a tree fragment in an input has never been observed at the current level
of annotation, we remove one level of annotation and use the probability
distribution given by the next less specific model. If no model contains
a probability distribution for this tree fragment, we introduce a rule that
copies the tree fragment with probability 1.

Two types of out-of-vocabulary problem can occur in this context, and
the strategy of adding copy rules provides robustness against them both.
In the first, an input contains a tree fragment whose structure has never
been seen in training. In this case, copy rules allow the structure to be
reproduced, leaving the system to make more informed changes lower down
in the tree. In the second, the input contains an unknown word. This only
affects transduction at the leaves of the tree, since, at the lower backoff
levels, nodes are not annotated with words. Adding probability 1 copy rules
allows the program to retain, replace, or delete unseen words based only
on the probabilities of rules higher up in the tree for which it does have
estimates.

3.5 Decoding and Reranking

Once the grammar has been acquired, it is converted to a finite tree to
tree transducer with one state and transitions defined by the grammar’s
individual rules. Transitions are weighted with the probabilities assigned
to the corresponding grammar rule. We use the tree automata package
Tiburon [MK06] to apply input sentence to the transducer. This yields a
weighted regular tree grammar that generates every tree that can result from
rewriting the input tree using the transducer. The probability of each tree
in this grammar is equal to the product of the probabilities of all rewrite
rules used to produce it during transduction.

We generate the 10,000 most probable trees for each input, and then
rerank them based on a log-linear combination of several features, namely:

21

• The tree’s probability.

• The probability of the output tree’s yield, as given by an n-gram lan-
guage model trained on the simple side of the training corpus.

• The probability of the sequence of preterminal nodes in the output
tree, as given by an n-gram model trained on the part-of-speech tags
of the simple corpus.

• A two-sided length penalty decreasing the score of output sentences
whose length, normalized by the length of the input, deviates from the
in-corpus mean, which was found empirically to be 0.85.

The first three of these features are intended to ensure that outputs are
well-formed according to the grammar of Wikipedia’s Simple English. The
length penalty is used to prevent both the over-deletion and insertion of
out-of-source phrases that T3 encountered.

Each output is ultimately ranked using a score of the form

λ0log(P (s|t))+λ1log(PLM (s))+λ2log(PPOS−LM (s))+(|0.85− length(s)

length(t)
|)λ3

Since we take the logarithm of all three probabilities, we raise the length
penalty to λ3 rather than multiplying to maintain log-linearity. The weights
of this score are set using random-restart hill-climbing search [RN03] with
BLEU [PPR+02] as a heuristic function. More details on BLEU are given
in Section 4.1.3.

22

Chapter 4

Evaluation

4.1 Experimental Setup

4.1.1 Competing Systems

We compared the performance of our transducer-based program, Wikid-
Simple, against several other text simplification and sentence compression
programs. These were:

• T3 [CL09], which is currently the state of art for abstractive text
compression.

• K&M, a deletion-only, SCFG-based text compressor based on Knight
and Marcu’s [KM02] approach. K&M employs a näıve, left-to-right,
deletion based tree-alignment heuristic, which defines two nodes as
aligned if their labels match and the simple node’s children are a sub-
sequence of the traditional node’s children. This results in a large
number of unaligned nodes, especially close to the leaves of each parse
tree.

• Lexicalized K&M, an implementation of K&M with head-lexicalization
and backoff.

• Moses+Del, a deleting phrase-based system, Moses+Del, that per-
formed well in preliminary tests.

• A baseline system that always returns an unaltered copy of the input
sentence.

23

All syntax-based systems were provided with parse trees for their input
sentences by the Berkeley Parser [PK07]. WikidSimple, T3, and Moses+Del
also used word-level alignments from GIZA++ [ON00]. The IRST LM
Toolkit [MF08] was used to compute WikidSimple’s n-gram language mod-
els.

4.1.2 Corpus

All programs used in our experiments were trained on our Wikipedia cor-
pus. This corpus contains 137,362 sentence pairs automatically extracted
from the English and Simple English sites. Pages between the two sites were
aligned if their titles matched exactly. Stubs, one-line pages, meta pages,
and disambiguation pages were removed. Paragraphs within aligned doc-
uments with normalized TF-IDF cosine similarity above a given threshold
were aligned. Sentences within paragraphs were aligned using a dynamic
programming approach based on sentence-level edit operations, and then
pairs with a TF-IDF cosine similarity at or below 0.5 were pruned. For
more detail on this corpus, see Kauchak and Coster[CK11].

The corpus was partitioned into training and test sets that differed
slightly between experiments. Our phrase-based and deletion-model systems
were trained on 123,626 sentences. 12,363 were reserved as a development
set for the phrase-based system. Due to time and memory issues, we were
unable to train T3 on the full training set — attempting to do so took
used over 100GB of memory and ran on our server for over a week without
terminating. T3 was ultimately trained the first 30,000 sentence pairs, the
largest subset of the training corpus it successfully completed processing.
All systems were tested on the same 1373-pair test set, except for Wikid-
Simple, which required the first 15 of these sentences to be reserved as a
development set. The remaining 1358 were used for testing.

4.1.3 Evaluation Metrics

We depart from the standard form of evaluation used in previous sen-
tence compression experiments, which requires eliciting human judgements
of grammaticality and importance. Instead, we opt to evaluate our system
using BLEU score. BLEU, developed by Papineni et al [PPR+02], rates
the similarity of an output sentence to a gold-standard reference, generally
produced by a human. It is calculated as the geometric mean of modified
n-gram precisions with respect to the reference, combined with a corpus-
level brevity penalty [PPR+02]. BLEU is a standard metric for machine

24

translation and has been demonstrated to correlate with human judgements
of translation quality [PPR+02] [Cou03]. We use the Simple Wikipedia sen-
tences aligned to our inputs as reference sentences.

We also report the Oracle BLEU score, which is obtained by allowing an
oracle to greedily select the single highest-scoring sentence from the thou-
sand best candidate outputs considered by the system. Oracle scores provide
a sense of the quality of candidate sentences each system is capable of gen-
erating. They give an upper bound on the BLEU score attainable by each
system through improved reranking alone.

In addition to these scores, we measure the mean ratio of the length in
words of output sentences to input sentences. This ratio, commonly reported
in sentence compression experiments as the compression rate, provides a
rough indication of the amount of deletion or insertion each system prefers.
Between the traditional and simple sides of our corpus, the length ratio
averaged 0.85.

Finally, we also document the percentage of input sentences that each
program leaves unmodified. Since Simple English is a subset of traditional
English, a proportion of input sentences are likely to be valid simple sen-
tences. Over the training corpus, 26.7% of traditional sentences were iden-
tical to the aligned simple sentence. While a system that leaves too many
inputs unmodified is less useful, some unchanged sentences are to be ex-
pected. This percentage is provided to give a sense of whether each system
is modifying too many or too few of its inputs.

4.2 Results

The results of our tests are summarized in Table 4.1.
Out of all the systems tested, only the phrase-based system Moses+Del

outperformed the baseline for one-best BLEU score. Moses+Del achieved
the highest BLEU score, 0.6046. Making no change to the input resulted
in a BLEU score of 0.5937. All four syntax-based systems — WikidSimple,
Lexicalized K&M, K&M, and T3 — produced one-best BLEU scores that
were significantly worse than doing nothing, scoring 0.5640, 0.4976, 0.4061,
and 0.2437, respectively.

The high performance of the baseline system can be explained by the
close similarity between the input and reference sides of the corpus. Unlike
in machine translation, where an unchanged input sentence is in a different

1We were unable to obtain an Oracle score for T3, since it outputs only a single best
simplification and not an n-best list.

25

System BLEU Oracle Length Ratio % Unmodified

WikidSimple 0.5640 0.6627 0.8487 57.5%
T3 0.2437 –1 0.5808 23.3%

Moses+Del (best phrase-based) 0.6046 0.6421 0.9907 56.9%
K&M (deletion only) 0.4061 0.6021 0.6758 10.5%

Lexicalized K&M 0.4976 0.6087 0.8256 20.7%
Baseline (no change) 0.5937 0.5937 1.0 100%

In-Corpus Mean – – 0.85 26.7%

Table 4.1: BLEU, Oracle score, mean length ratio, and mean percentage
of inputs unmodified for all systems tested, with mean values from training
corpus.

language than the reference and is therefore very unlikely to have many n-
grams in common with the reference, in text simplification there is likely to
be substantial overlap between the input and the reference. Fully 26.7% of
simple sentences in the training corpus were identical to the aligned tradi-
tional sentence. On average, simple sentences in the training corpus were
only 15% shorter than their traditional equivalents, suggesting that a sub-
stantial portion of the source sentence was retained even in sentences that
underwent some simplification. Also, since reference sentences tend to be
shorter than the corresponding inputs, leaving the input unchanged escapes
BLEU’s one-sided, multiplicative brevity penalty.

T3 showed the poorest performance of any system evaluated here, with
a one-best BLEU score of 0.2437. This low score was the result of several
problematic behaviors not produced by the other systems. T3 tended to
aggressively over-delete, retaining on average only 58% of the original sen-
tence’s length, less than any other system tested. This is apparent in many
of the sentences T3 produces as output — for instance, it compacts the
sentence:

“In earlier times, they frequently lived on the outskirts of
communities, generally in squalor.”

to just

“A lived”

Such short outputs result in high brevity penalties, dragging down BLEU.
In addition to over-shortening, T3 also tended to insert out-of-source

material, as previously observed by both Nomoto and Marsi et al. [Nom09]
[MKHD10]. For instance, as a simplification of the sentence

26

“A cameo role or cameo appearance is a brief appearance of
a known person in a work of the performing arts, such as plays,
films, video games and television.”

T3 returns

“Later on, Japanese called a cameo role and cameo appear-
ance films.”

WikidSimple came the closest to the in-corpus length ratio, most likely
because of the two-sided length penalty used in reranking. Moses+Del was
far more conservative with deletions, tending to produce output that was
only about 1% shorter than the input. Both WikidSimple and Moses+Del
left almost 60% of inputs unchanged, more than twice as many as were
unchanged in the training corpus.

WikidSimple tended to simplify by deleting prepositional, adjective, and
adverbial phrases, and by truncating conjunction phrases to one of their
conjuncts. This often resulted in outputs that were syntactically well-formed
with some degree of information loss. In some cases, this was a desirable
outcome — for example, it converts

“The Haiti national football team is the national team of
Haiti and is controlled by the Fédération Haẗıenne de Football.”

to

“The Haiti national football team is the national football
team of Haiti.”,

which differs from the reference by only one word. In other cases, these
changes were destructive to the meaning of the sentence, as when Wikid-
Simple reduced the input

“An easily visualized metaphor is a group of separate soap
bubbles, in which observers living on one bubble can not interact
with those on other soap bubbles, even in principle.”

down to

“An easily visualized metaphor is a group.”

WikidSimple also produces a number of interesting lexical and phrasal
substitutions, including generalizing “football striker” and “football defender”
to “football player”, “in order to” to “to”, “known as” to “called”, and
“member” to “part”.

Table 4.2 shows several sample inputs, along with the gold standard
sentence and the output produced by each system.

27

System Output

Input After Anton Szandor Lavey’s death, his position as head of the
Church of Satan passed on to Blanche Barton.

Reference After Anton Szandor Lavey ’s death, his partner Blanche Barton
became head of the Church of Satan.

WikidSimple After Anton Szandor Lavey ’s death, his position passed on to
Blanche Barton.

T3 His partner Blanche Barton
M+D (same as input)
K&M His position as head of the Church of passed on to Blanche Barton.

LK&M After Anton Szandor Lavey’s death, his position as passed on.

Input Overall Bamberga is the tenth brightest main belt asteroid after, in order,
Vesta, Pallas, Ceres, Iris, Hebe, Juno, Melpomene, Eunomia and Flora.

Reference (same as input)
WikidSimple Overall Bamberga is the tenth brightest main belt asteroid.

T3 Overall Bamberga is the main belt.
M+D (same as input)
K&M (same as input)

LK&M (same as input)

Input Raúl Vicente Amarilla is a former Paraguayan football striker.
Reference Raúl Vicente Amarilla is a former Paraguayan football player.

WikidSimple Raúl Vicente Amarilla is a former Paraguayan football player.
T3 (same as input)

M+D: Raúl Vicente Amarilla is a former Paraguayan football player.
LK&M is a former Paraguayan football striker.

K&M (same as input)

Table 4.2: Comparison of sample outputs for all systems tested.

28

4.2.1 Oracle BLEU Scores

While WikidSimple’s one-best BLEU score fell short of the baseline, its Ora-
cle BLEU score was the highest of any system we examined, at 0.6627. This
is over 2 BLEU points greater than the Oracle score attained by Moses+Del,
and about 7 BLEU points greater than the baseline.

This high score indicates that WikidSimple was able to generate can-
didate outputs with greater similarity to the reference than any produced
by Moses+Del or the baseline. Although its reranker could not reliably
promote them to the top of the list, these sentences were given relatively
high probabilities, all in the top 10% of the 10,000 sentences generated by
the grammar. With improved reranking, WikidSimple has the potential to
outperform both the baseline and the phrase-based approach.

29

30

Chapter 5

Conclusions

In this paper, we introduced WikidSimple, a data-driven, syntax-based text
simplification system designed to work with a larger corpus than had been
previously used for this task. This program acquired a probabilistic syn-
chronous tree substitution grammar from a collection of parsed, aligned
sentences culled from English and Simple English Wikipedia. It used this
grammar as a tree transducer to rewrite input sentences as their most likely
simplified form, then reranked these outputs using language models and a
length penalty.

We evaluated WikidSimple, the state-of-the-art abstractive compression
system T3, and several other text simplification programs on our Wikipedia
corpus using BLEU score. While only the phrase-based system Moses+Del
produced one-best outputs scoring higher than the baseline approach of re-
turning the input sentence, WikidSimple outscored T3 and two other syntax-
based systems. WikidSimple was able to train faster and more completely
then T3, and to generate substantially higher scoring sentences without re-
quiring computationally expensive discriminative learning.

WikidSimple also produced higher-scoring sentences in its thousand best
candidate outputs than any other system tested, surpassing Moses+Del by
2 BLEU points and the baseline by 7. Its synchronous grammar consistently
generated sentences that scored higher than any produced by the phrase-
based system, and it has the potential to return these sentences as output
with improved reranking.

31

5.1 Future work

Data-driven text simplification is a relatively new problem, with myriad
opportunities for future work. All of our systems that generated n-best lists
showed a wide discrepancy between the BLEU score of their one-best output
and the score of outputs chosen by an oracle. Better reranking of output
sentences could close this gap across all these systems, without requiring
deep changes to any particular model. For WikidSimple, we experimented
with a small set of features – only an n-gram language model, a part of speech
n-gram model, and a length penalty. An investigation into which features
improve simplification quality would help all of these systems realize their
potential.

Future work should also include a detailed study of evaluation metrics
for this domain. No such study has yet been undertaken, and our results
raise some questions about the appropriateness of BLEU for this task. Both
the similarity of simplified English sentences to their traditional forms and
BLEU’s one-sided brevity penalty often favor systems that avoid making
changes that a human reader would recognize as simplifications. It is pos-
sible that using multiple reference simplifications might improve this, but
other evaluation metrics should be investigated. Other metrics have been
explored in a sentence compression context, including Simple String Accu-
racy (SSA) and F-score of the grammatical relations between the input and
the reference. Clarke and Lapata [CL06] report that this F-score correlates
with human judgements of sentence compression quality, so it may prove
worthwhile to investigate its applicability to this domain.

Finally, better alignment of sentences between English and Simple En-
glish Wikipedia would improve the performance of data-driven text simpli-
fiers in general. Our corpus was aligned using simple text similarity heuris-
tics, resulting in some alignments that are recognizably not simplifications.
When these mis-alignments appear in training, they cause text simplifica-
tion systems to learn incorrect edit operations. When they occur in testing,
they cause output sentences to be compared to an inappropriate standard.
Raising the quality of sentence alignment could eliminate these sources of
error.

32

Bibliography

[Ano11a] Anonymous. Wikipedia main page. http://en.wikipedia.

org/wiki/Main_Page, April 2011.

[Ano11b] Anonymous. Wikipedia:simple english wikipedida.
http://simple.wikipedia.org/wiki/Wikipedia:

Simple_English_Wikipedia, April 2011.

[Ano11c] Anonymous. Wikipedia:simple english wikipedida. http://

simple.wikipedia.org/wiki/Main_Page, April 2011.

[BPPM93] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. The mathematics of statistical
machine translation: parameter estimation. CL., 19:263–311,
June 1993.

[Chi06] David Chiang. An introduction to synchronous grammars. Part
of a tutorial given at ACL., 2006.

[CK11] William Coster and David Kauchak. Simple english wikipedia:
A new text simplification task. In Proceedings of ACL (Short
Paper), 2011.

[CL06] James Clarke and Mirella Lapata. Models for sentence compres-
sion: A comparison across domains, training requirements and
evaluation measures. In Proceedings of COLING-ACL, pages
377–384, 2006.

[CL07] Trevor Cohn and Mirella Lapata. Large margin synchronous
generation and its application to sentence compression. In Pro-
ceedings of EMNLP-CoNLL, pages 73–82, 2007.

[CL08] Trevor Cohn and Mirella Lapata. Sentence compression beyond
word deletion. In Proceedings of COLING, pages 137–144, 2008.

33

[CL09] Trevor Cohn and Mirella Lapata. Sentence compression as tree
transduction. JAIR, 34(1):637–674, 2009.

[CMC+98] John Carroll, Guido Minnen, Yvonne Canning, Siobhan Devlin,
and John Tait. Practical simplification of english newspaper text
to assist aphasic readers. In Proceedings of AAAI-98 Workshop
on Integrating Artificial Intelligence and Assistive Technology,
pages 7–10, 1998.

[Cou03] Deborah Coughlin. Correlating automated and human assess-
ments of machine translation quality. In Proceedings of MT
Summit IX, pages 63–70, 2003.

[CS97] Raman Chandrasekar and Bangalore Srinivas. Automatic in-
duction of rules for text simplification. KBS, 10(3):183–190,
1997.

[CTAC00] Yvonne Canning, John Tait, Jackie Archibald, and Ros Crawley.
Cohesive generation of syntactically simplified newspaper text.
In Proceedings of TSD, pages 145–150, 2000.

[GM07] Michel Galley and Kathleen McKeown. Lexicalized Markov
grammars for sentence compression. In Proceedings of HLT-
NAACL, pages 180–187, 2007.

[JM00] Hongyan Jing and Kathleen R. McKeown. Cut and paste based
text summarization. In Proceedings of NAACL, pages 178–185,
2000.

[KHB+07] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris C. Burch,
Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen,
Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. Moses: open source
toolkit for statistical machine translation. In Proceedings of
the 45th Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, ACL ’07, pages 177–180. ACL, 2007.

[KM02] Kevin Knight and Daniel Marcu. Summarization beyond sen-
tence extraction: a probabilistic approach to sentence compres-
sion. AI, 139(1):91–107, 2002.

[Mah97] K. Mahesh. Hypertext summary extraction for fast document
browsing. In Working Notes of the AAAl Spring Symposium on
NLP for WWW, pages 95–103, 1997.

34

[McD06] Ryan McDonald. Discriminative sentence compression with soft
syntactic evidence. In 11th Conference of the European Chapter
of the ACL, 2006.

[MF08] M. Cettolo M. Federico, N. Bertoldi. Irstlm: an open source
toolkit for handling large scale language models. In Proceedings
of Interspeech, Brisbane, Australia, 2008.

[MK06] Jonathan May and Kevin Knight. Tiburon: A weighted tree
automata toolkit. In Oscar H. Ibarra and Hsu-Chun Yen, edi-
tors, Proceedings of CIAA 2006, volume 4094 of Lecture Notes
in Computer Science, pages 102–113, Taipei, Taiwan, August
2006. Springer.

[MKHD10] Erwin Marsi, Emiel Krahmer, Iris Hendrickx, and Walter Daele-
mans. On the limits of sentence compression by deletion. In
E. Krahmer and M. Theune, editors, Empirical Methods in
NLG, volume 5790 of LNCS, pages 45–66. 2010.

[Nom08] Tadashi Nomoto. A generic sentence trimmer with CRFs. In
Proceedings of ACL-HLT, pages 299–307, 2008.

[Nom09] Tadashi Nomoto. A comparison of model free versus model
intensive approaches to sentence compression. In Proceedings of
EMNLP, pages 391–399, 2009.

[ON00] F. J. Och and H. Ney. Improved statistical alignment models.
In ACL00, pages 440–447, Hongkong, China, October 2000.

[ON04] Franz Josef Och and Hermann Ney. The alignment template
approach to statistical machine translation. COLI, 30(4):417–
449, 2004.

[Pit10] Emily Pitler. Methods for sentence compression. Technical Re-
port MS-CIS-10-20, University of Pennsylvania Department of
Computer and Information Science, 2010.

[PK07] Slav Petrov and Dan Klein. Improved inference for unlexicalized
parsing. In In Proceedings of HTL-NAACL 2007, pages 404–
411, Rochester, New York, April 2007. Association for Compu-
tational Linguistics.

35

[PO07] Sarah E. Petersen and Mari Ostendorf. Text simplification for
language learners: a corpus analysis. In In Proc. of Workshop
on Speech and Language Technology for Education, 2007.

[PPR+02] Kishore Papineni, Kishore Papineni, Salim Roukos, Salim
Roukos, Todd Ward, Todd Ward, Wei jing Zhu, and Wei jing
Zhu. Bleu: A method for automatic evaluation of machine trans-
lation. In Proceedings of ACL 2002, pages 311–318, 2002.

[RN03] S Russell and P Norvig. Artificial intelligence: A modern ap-
proach, 2003.

[Shi04] Stuart M.. Shieber. Synchronous Grammars As Tree Transduc-
ers. In In Proceedings of TAG+7, pages 88–95, 2004.

[TC05] Jenine Turner and Eugene Charniak. Supervised and unsuper-
vised learning for sentence compression. In Proceedings of ACL,
pages 290–297, 2005.

[TJHA05] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. Journal of Machine Learning Research (JMLR),
6:1453–1484, September 2005.

[YN08] Elif Yamangil and Rani Nelken. Mining wikipedia revision his-
tories for improving sentence compression. In Proceedings of
HLT-NAACL, pages 137–140, 2008.

36

