
CS 181S October 31, 2018

Lecture 15: Discretionary Access Control

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation 𝑨𝒖𝒕𝒉:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
elphaba r r
glinda r

Who defines authorizations?
• Discretionary Access Control: owner defines

authorizations
• Mandatory Access Control: centralized authority defines

authorizations

Access Control Mechanisms
• A reference monitor is consulted whenever one of a

predefined set operations is invoked
• operation ⟨𝑃, 𝑂, 𝑜𝑝⟩	is allowed to proceed only if the invoker 𝑃 is

authorized to perform 𝑜𝑝	on object 𝑂
• Can enforce confidentiality and/or integrity
• Assumption: Predefined operations are the sole means

by which principals can learn or update information.
• Assumption: All predefined operations can be monitored

(complete mediation).

Design Principles
• Principle of Failsafe Defaults favors defining an access

control policy by enumerating privileges rather than
prohibitions.

• Principle of Least Privilege is best served by having
fine-grained principals, objects, and operations.

Real-World Examples
• Consider two real-world access control systems:

(i) guest lists at clubs, and (ii) physical keys to doors.
• How do each of those systems handle the primary

concerns of access control:
• granting access
• preventing/determining access
• revoking access
• auditing access

Implementing DAC
• Need some way to representing authorization relation

(matrix) 𝐴𝑢𝑡ℎ.
• That scheme must support certain functionality:

• computing whether ⟨𝑃, 𝑂, 𝑜𝑝⟩ 	∈ 	𝐴𝑢𝑡ℎ holds and (i.e., whether
principal 𝑃	is authorized to perform operation 𝑜𝑝	on object 𝑂,

• changing 𝐴𝑢𝑡ℎ	in accordance with defined commands
• associating a protection domain with each thread of control
• performing transitions between protection domains as execution

proceeds.

Instead of Matrices…

• An access control list encodes the non-empty cells
associated with a column (object).

• A capability list encode the non-empty cells associated
with a row (principal).

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
elphaba r r
glinda r

Access Control Lists

Capability
lists

Access Control Lists
• The access control list for an object 𝑂	is a list

⟨𝑃2, 𝑃𝑟𝑖𝑣𝑠2⟩, ⟨𝑃7, 𝑃𝑟𝑖𝑣𝑠7⟩, …	, ⟨𝑃9, 𝑃𝑟𝑖𝑣𝑠9⟩	
• e.g., ⟨ebirrell, {r,w}⟩ ⟨elphaba, {r}⟩ ⟨glinda, {r}⟩

• To check whether 𝑃:	is allowed to perform 𝑜𝑝	on object 𝑂,
• Look up 𝑃:	in ACL. If not in list, reject 𝑜𝑝.
• Check whether 𝑜𝑝	is in the sent 𝑃𝑟𝑖𝑣𝑠:. If not , reject 𝑜𝑝.

Access Control Lists
• Advantages:

• Efficient review of permissions for an object
• Centralized enforcement is simple to deploy, verify
• Revocation is straightforward

• Disadvantages:
• Inefficient review of permissions for a principal
• Large lists impede performance
• Vulnerable to confused deputy attack

Groups in ACLs
• A group declaration associates a group name with a set of

principals.
• The set is specified either by enumerating its elements or

by giving a predicate that all principals in the set must
satisfy.

• An ACL entry ⟨𝐺, 𝑃𝑟𝑖𝑣𝑠⟩, where 𝐺 is a group name and
𝑃𝑟𝑖𝑣𝑠	is a set of privileges, grants all privileges in 𝑃𝑟𝑖𝑣𝑠	to
all principals 𝑃	that are members of 𝐺.

Wildcards
• Many advocate terse representations for ACL entries,

assuming that checking shorter access control lists is
faster.

• One approach is to employ patterns and wildcard symbols
for specifying names of principals or privileges, so that a
single ACL entry can replace many

Prohibitions
• In order to conclude that 𝑃	does not hold 𝑜𝑝 for an object
𝑂, we would have to enumerate and check the entire ACL.

• Some systems allow a prohibition to appear in an ACL-
entry.
• The prohibition 𝑜𝑝 specifies that execution of operation 𝑜𝑝 is

prohibited.
• Conflict resolution is not always specified (often first)

Demo: Access Control Lists

Protection Domains
• Motivation: users are too coarse-grained to define

privileges
• Protection Domains:

• Each thread of control is associated with a protection domain
• Each protection domain is associated with a different set of

privileges
• We allow transitions from one protection domain to another as

execution of the thread proceeds.

Protection Domains
• Typical implementation: certain system calls cause

protection-domain transitions.
• System calls for invoking a program or changing from user mode to

supervisor mode are obvious candidates.
• Some operating systems provide an explicit domain-

change system call instead
• the application programmer or a compiler’s code generator is then

required to decide when to invoke this domain-change system call
• We use the term attenuation of privilege for a transition

into a protection domain that eliminates privileges.
• We use the term amplification of privilege for a transition

into a protection domain that adds privileges.

Objects
dac.tex dac.pptx

principal
s

ebirrell@sh
ebirrell@edit r,w
ebirrell@powerpoint r,w
elphaba@sh
elphaba@edit r
elphaba@powerpoint r
glinda@sh
glinda@edit
glinda@powerpoint r

Protection Domains
Objects

dac.tex dac.pptx ebirrell
@sh

ebirrell
@edit

ebirrell@
powerpoint

principal
s

ebirrell@sh e e e
ebirrell@edit r,w
ebirrell@powerpoint r,w
elphaba@sh
elphaba@edit r
elphaba@powerpoint r
glinda@sh
glinda@edit
glinda@powerpoint r

Role-Based Access Control
• Particularly in corporate and institutional settings, users

might be granted privileges by virtue of membership in a
group.
• E.g., students who enroll in a class should be given access to that

semester’s class notes and assignments simply due to their new
role

• Without groups, implementing role-based access control
is error prone
• Adding or deleting a member might require updating many access

control lists. That can be error-prone.
• Revocation is subtle. Should permission be removed with principal

is removed from a group?

Confused Deputy
Server: operation(f : file)

S1: buffer := FileSys.Read(f)
S2: results := F(buffer)
S3: diff:= calcDiff(results)
S4: FileSys.Write(f , results)
S5: FileSys.Write(log.txt, diff) end Server

Privilege Escalation

Cross-Site Request Forgery (CSRF)

Attack Server

Server Victim

User Victim

1

2

4

Solving the Confused Deputy Problem
Server: operation(f : file)

S1: buffer := FileSys.Read(f)
S2: results := F(buffer)
S3: diff:= calcDiff(results)
S4: FileSys.Write(f , results)
S5: FileSys.Write(log.txt, diff) end Server

Capability Lists

