Docker Guide

Introduction

Docker is a convenient way to manage virtual environments as ”containers.” We will be using it
to run Ubuntu 22.04 (jammy), a Linux-based operating system.

Why are we using this? With virtualization, we can specify a standard development envi-
ronment on any machine, so your code will work no matter where it’s run. (You won’t need to
log into the department machines to write, test, or hand in your code!)

Your computer is probably running Mac OS, Windows, or Linux. These different operat-
ing systems all come with different libraries and preinstalled software. A |Virtual Machine| can
establish the same software environment for everyoneﬂ

In this class, we will use a container, a technology that emulates an OS without the full
overhead of a VM. The container runs a Linux-based operating system, Ubuntu. The autograder
also runs a Linux-based OS, so if your code works in the container, it will work on the autograder.

Docker

Docker| is one of the most popular container solutions and widely used in industry. In this class,
we use Docker because it lets you run a course container on Windows, Mac OS, or Linux. You
may download Docker here. On Linux machines, follow the instructions here.

After downloading Docker, follow Docker’s instructions to install it on your OS. Accept if
Docker asks for privileged access. On Windows or Mac OS, open the Docker Desktop application
after it has been installed. You may see a message similar to “Docker Desktop is Starting...”.
Once this message goes away, your Docker has started successfully!

Verify Docker is installed by executing the following command in a terminal:

docker --version

A Docker version number should be printed. After installing Docker, a Docker process (the
Docker daemon) will run in the background. Run the following command to verify:

docker info

This should print some information about your Docker installation. If you see the following
error:
ERROR: Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the

docker daemon running?

it means Docker hasn’t started running yet. On Windows or Mac OS, ensure your Docker
Desktop is running. On Linux, try the command sudo systemctl docker restart in a termi-
nal.

You can follow additional instructions from the Brown University (CS300 lab| if you are on
Windows and do not have WSL (Windows Subsytem for Linux) set up yet.

Setting Up the Dev Environment

In Docker, an environment is defined as a Docker image. An image specifies the operating
system environment that a container provides. An image can also contain additional software
dependencies and configurations. These instructions are specified in a file, the so-called Dock-
erfile. You will now download the course’s setup code and create the course Docker image!

INote: Software inside a VM believes it is running on a physical computer, even though it is running within
an OS within another computer. Achieving this level of virtualization has costs, including the cost of emulating
the underlying hardware.

1 of CS181CA Fall 2025

https://www.youtube.com/watch?v=yIVXjl4SwVo
https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://docs.docker.com/engine/install/ubuntu/
https://cs.brown.edu/courses/csci0300/2023/assign/labs/lab0.html

Docker Guide

Mac OS only: Install Apple development tools If you're running on Mac OS, you will
need to install a set of Apple-recommended command-line tools via the following command:

xcode-select --install

This ensures that your computer has installed git, a program we’ll use later. Alternatively, you
may also download and install git directly, following instructions from here,
Do the following to set up your development environment.

1. Enter the directory on your computer where you want to do your coursework. For Windows
users, choosing somewhere in the C drive will make the following steps easier. Then, enter
the following command to download our development environment, to the new subdirectory
DEV-ENVIRONMENT (you can choose your own name, DEV-ENVIRONMENT is a placeholder!):

1 git clone https://github.com/pomona-csi8lca-po/csi8lca-f25-devenv.git DEV-
ENVIRONMENT

2. cd DEV-ENVIRONMENT to enter the directory you have just created.

3. Inside this folder, do the following: ./docker/cs181ca-setup-docker. This will attempt
to pull our Docker image that has been prebuilt. If you wish to do so, ./docker/cs181ca-
build-docker will build the image from scratch (this can take more than 30 minutes).

4. After this, you can run the Docker image with ./cs181lca-run-docker which will launch
a containerized environment with the appropriate libraries installed. You can now interact
with the shell of the container and run Ctrl-D to exit.

Shared Folders “If my docker container is a separate (virtual) computer than my laptop, how
will T move files between the two?” you may ask. Great question! You’ll move files between the
two in any of the ways you can move files between any two computers! (Bear with me!)

To get files to and from department machines, you may have used things like scp, sftp, and
Cyberduck, which allow you to copy files over the network. You can use these tools (or other
tools like git) to transfer files in and out of a running container!

Text Editors and IDEs

What development environment or editor to use is a question that divides people and has led to
countless hours being wasted on heated discussion, offline and online for decades. Some people
prefer very simple editors that run in their terminal, while others prefer graphical integrated
development environments (IDEs). For this course, if it works for you, great!

To make your life easier, however, you probably want to use an editor with syntax highlighting
for C++, the main programming language for this course.

You can edit your source code inside the course container, or on your normal operating
system. Recall that the home directory inside the container is a mount of your local cs181ca/home
directory (or whatever you named it). This means that you can install any editor or IDE of your
choice on your local machine, edit your files and work on your assignments locally, and all of
your changes will be reflected in your container! You can then compile, build, and run your
assignments inside your container.

There are plenty of great choices for text editors. If you’re not sure which one to install, we
recommend VSCodeﬂ It has very nice integration with our Docker container, and it’s nicely
customizable with extensions.

2Navigate to the extensions tab and search for/install teh “Docker”, “Dev Containers” and “WSL” extensions.

2 of CS181CA Fall 2025

https://git-scm.com/download/mac
https://github.com/pomona-cs181ca-po/cs181ca-f25-devenv

Docker Guide

Installing Programs on Linux (in your course container)

Our containers come with a few programs pre-installed, but what if we want more? With a text-
based interface like the command line, it’s quite difficult to navigate the web and find a suitable
download link. Instead, we use a program called a package manager which can automatically
download, install, and update programs. We’ll be using a manager called apt. apt can install
many things, including tools to build (or compile), and debug your code. Our containers already
come with these tools for your convenience.

As an example, to install fortune, you would run

1 sudo apt update
> sudo apt install fortune

Make sure the course container is running, and click the green button at the bottom left of VSCode — you should
see an option “Attach to running container” and you can select the course container.

3 of CS181CA Fall 2025

