
CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

A (Brief) Overview of GPUs

1

HW3 due Monday at
midnight;

Colloquium at Mudd today!

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview2

ASRock Motherboard
(integrated graphics) Image credits: https://

en.wikipedia.org/wiki/
Graphics_processing_unit

S3 ViRGE

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

Outline

• Brief overview of data-level parallelism

• From vector processors to GPUs

• GPU programming

3

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

The (Way too Brief) Origin of GPUs

4

1960s

Can we get more compute by
adding more ALUs to the

system, where each ALU has
distinct data to work on?

Image credit: https://
en.wikipedia.org/wiki/

Vector_processor

1996

Graphics require extensive
simultaneous parallel data

operations! Extend the ISA with
single-instruction multiple data

(SIMD) instructions

Image credit: https://
en.wikipedia.org/wiki/
MMX_(instruction_set)

Graphics accelerators become
mainstream extensions to

commodity devices (attached
via I/O); often uses SIMT (thread)

instruction extensions

2000s

From our textbook: “GPUs and
CPUs do not go back in
computer architecture

genealogy to a common
ancestor; there is no “missing

link” that explains both”

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

The Key Idea of Vector Processing

• Any application that requires linear algebra-
like routines is going to exhibit “DAXPY”-
like behavior

• If this is the case, then there are no data
dependences between operations ➡ the
operation is vectorizable

• Each element of the vectorizable instruction
can be computed individually and then the
result can be aggregated ➡ this algorithmic
technique is called scatter-gather

5

Y = a * X + Y

DAXPY

for (int i = 0; i < n; i++) {
Y[i] = a * X[i] + Y[i];

}

Adder
X[0]

X[0]Y[1]Y[2]Y[3]

X[1]X[2]X[3]

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

Suppose we wanted to implement an instruction for “vector add”
that takes two vectors A and B as inputs and produces a vector as
output. How would the instruction be constructed? Where would A

and B be stored? How would the compute units be utilized?

6

Chat with your neighbor(s)!

Just like before, we
can encode vector
instructions as an

instruction in the ISA
with its own opcode

and inputs

If we want to store an entire
vector in a register, then we
will need a special type of

vector register in which
multiple data can be stored!

Once data is fetched
from the special

“vector register”, the
contents are split

(wires redirected) to the
various compute units!

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

Data Level Parallelism

• The notion of encoding several variables (e.g., elements within a vector) to be processed
in parallel is referred to as data level parallelism

• In general, the most common type of data-level parallelism is single-instruction multiple-
data (SIMD) ➡ the common example of this is to add the elements of two vectors
together

• To construct a vector register, data needs to be contiguous in memory so that a small
number of loads can retrieve all of the data to a single register ➡ vector registers are
often larger than a data word!

• Because fetching data to a large vector register is larger than a word, it often requires
several fetches to memory to load into a single register ➡ memory bandwidth has been
and remains a bottleneck!

7

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

The GPU Programming Model

8

CPU
GPU

Memory

Shared

GPU Only

GPU
Instructions

GPU Data

import pycuda.autoinit
import pycuda.driver as drv
import numpy

from pycuda.compiler import SourceModule
mod = SourceModule(“““
__global__ void multiply(float *dest, float *a, float *b) {

const int i = threadIdx.x;
dest[i] = a[i] * b[i];

}
”””)

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
mod.get_function(“multiply”)(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1), grid=(1, 1))

print(dest)

In NVIDIA’s CUDA
language, GPU code

written like C code that is
distributed across threads

The inputs to these C
functions are passed explicitly
as inputs and outputs to the
driver, which is implemented

in the operating system

The data (and
thread spawning) is

organized into
blocks and grids

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

The Link Between GPUs and Neural Networks

• Neural networks can be encoded as matrices ➡ each layer of the network as
a dimension of the matrix, and the data at that index represents the weight of
the connection

• If we have large models with lots of connections, then we need to perform a
large number of matrix multiplication operations

• In general, if the data is encoded as a floating point value, then we can
measure the overall performance of the GPU as the number of FLOPS (float
point operations per second)

9

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

What are some of the performance bottlenecks for
processing on a GPU? Think about the construction

and organization of the data, how data is
communicated around the system, etc…

10

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, GPU Overview

Takeaways

• GPUs depend on large degrees of parallelizability and vectorizability in the
development of an application

• To communicate data between a processor and GPU, there needs to be a
special instruction set for instructions to be compiled down to and a location
for these instructions to be read from

• Bottlenecks in GPU computation come from data communication and lack of
alignment in data layouts

• Parallelizability in the GPU leverages the lack of dependencies between
computations in deriving a larger goal!

11

