A (Brief) Overview of GPUs

HW3 due Monday at
midnight;
Colloquium at Mudd today!
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Outline

* Brief overview of data-level parallelism
 From vector processors to GPUs

 GPU programming
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Westinghouse

-

Can we get more compute by
adding more ALUs to the
system, where each ALU has
distinct data to work on?

>

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

~

é Graphics require extensive

simultaneous parallel data
operations! Extend the ISA with
single-instruction multiple data

\ (SIMD) instructions )

The (Way too Brief) Origin of GPUs

~

fGraphics accelerators become
mainstream extensions to

commodity devices (attached

via I/0); often uses SIMT (thread)

\ Instruction extensions

Image credit: https://
en.wikipedia.org/wiki/

Vector_processor
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en.wikipedia.org/wiki/
MMX_ (instruction_set)
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[ Image credit: https://

[ 2000s ]

4 )
From our textbook: “GPUs and
CPUs do not go back in
computer architecture
genealogy to a common
ancestor; there is no “missing

link” that explains both”
\_ _J
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* Any application that requires linear algebra-
like routines is going to exhibit “DAXPY”-
like behavior

e |f this Is the case, then there are no data
dependences between operations (&4 the
operation Is vectorizable

e Each element of the vectorizable instruction
can be computed individually and then the

result can be aggregated 4 this algorithmic
technique Is called scatter-gather
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The Key ldea of Vector Processing

DAXPY

Y=a*"X+Y

\_ J

-

-

for (inti=0;i<mn;i++) {
Y[i] =a * X[i] + Y[i];
}
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Chat with your neighbor(s)!

Suppose we wanted to implement an instruction for “vector add”
that takes two vectors A and B as Inputs and produces a vector as
output. How would the instruction be constructed? Where would A

and B be stored? How would the compute units be utilized?

Just like before, we
can encode vector
Instructions as an

instruction in the ISA
with its own opcode
and inputs
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Once data is fetched
from the special
“vector register”, the
contents are split
(wires redirected) to the
various compute units!

If we want to store an entire
vector in a register, then we
will need a special type of
vector register in which
multiple data can be stored!
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Data Level Parallelism

* The notion of encoding several variables (e.g., elements within a vector) to be processed
in parallel is referred to as data level parallelism

* |n general, the most common type of data-level parallelism is single-instruction multiple-
data (SIMD) g the common example of this is to add the elements of two vectors

together

* Jo construct a vector register, data needs to be contiguous in memory so that a small
number of loads can retrieve all of the data to a single register 4 vector registers are

often larger than a data word!

 Because fetching data to a large vector register is larger than a word, it often requires
several fetches to memory to load into a single register &d memory bandwidth has been

and remains a bottleneck!
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GPU
Instructions
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GPU

Memory

€ GPU Data

The GPU Programming Model

N N\ )
The inputs to these C
The data (and

functions are passed explicitly I
as inputs and outputs to the thread spawn_mg) IS
driver, which is implemented organized into

In NVIDIA’s CUDA
language, GPU code
written like C code that is

distributed across threads in the operating system blocks and grids
g J < RN Y,
-
import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule(“““
__global__ void multiply(float *dest, float *a, float *b) {
const int i = threadIdx.x;
dest[i] = a[i] * b[i];
}
77””)
a = numpy.random.randn(400).astype(numpy.float3R)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
mod.get_function(“multiply”)(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1), grid=(1, 1))
print(dest)
-

J
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The Link Between GPUs and Neural Networks

 Neural networks can be encoded as matrices s each layer of the network as

a dimension of the matrix, and the data at that index represents the weight of
the connection

* |f we have large models with lots of connections, then we need to perform a
large number of matrix multiplication operations

* |n general, if the data is encoded as a floating point value, then we can
measure the overall performance of the GPU as the number of FLOPS (float

point operations per second)
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Chat with your neighbor(s)!

What are some of the performance bottlenecks for
processing on a GPU? Think about the construction
and organization of the data, how data is
communicated around the system, etc...
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Takeaways

 GPUs depend on large degrees of parallelizability and vectorizability in the
development of an application

 To communicate data between a processor and GPU, there needs to be a
special instruction set for instructions to be compiled down to and a location
for these instructions to be read from

* Bottlenecks in GPU computation come from data communication and lack of
alignment in data layouts

» Parallelizability in the GPU leverages the lack of dependencies between
computations in deriving a larger goal!
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