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A (Brief) Overview of GPUs
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HW3 due Monday at 
midnight; 

Colloquium at Mudd today!
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ASRock Motherboard 
(integrated graphics) Image credits: https://

en.wikipedia.org/wiki/
Graphics_processing_unit

S3 ViRGE
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Outline

• Brief overview of data-level parallelism


• From vector processors to GPUs


• GPU programming
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The (Way too Brief) Origin of GPUs
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1960s

Can we get more compute by 
adding more ALUs to the 

system, where each ALU has 
distinct data to work on?

Image credit: https://
en.wikipedia.org/wiki/

Vector_processor

1996

Graphics require extensive 
simultaneous parallel data 

operations! Extend the ISA with 
single-instruction multiple data 

(SIMD) instructions

Image credit: https://
en.wikipedia.org/wiki/
MMX_(instruction_set)

Graphics accelerators become 
mainstream extensions to 

commodity devices (attached 
via I/O); often uses SIMT (thread) 

instruction extensions

2000s

From our textbook: “GPUs and 
CPUs do not go back in 
computer architecture 

genealogy to a common 
ancestor; there is no “missing 

link” that explains both”
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The Key Idea of Vector Processing

• Any application that requires linear algebra-
like routines is going to exhibit “DAXPY”-
like behavior


• If this is the case, then there are no data 
dependences between operations ➡ the 
operation is vectorizable


• Each element of the vectorizable instruction 
can be computed individually and then the 
result can be aggregated ➡ this algorithmic 
technique is called scatter-gather
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Y = a * X + Y

DAXPY

for (int i = 0; i < n; i++) { 
Y[i] = a * X[i] + Y[i]; 

}

Adder
X[0]

X[0]Y[1]Y[2]Y[3]

X[1]X[2]X[3]
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Suppose we wanted to implement an instruction for “vector add” 
that takes two vectors A and B as inputs and produces a vector as 
output. How would the instruction be constructed? Where would A 

and B be stored? How would the compute units be utilized?
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Chat with your neighbor(s)!

Just like before, we 
can encode vector 
instructions as an 

instruction in the ISA 
with its own opcode 

and inputs

If we want to store an entire 
vector in a register, then we 
will need a special type of 

vector register in which 
multiple data can be stored!

Once data is fetched 
from the special 

“vector register”, the 
contents are split 

(wires redirected) to the 
various compute units!
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Data Level Parallelism

• The notion of encoding several variables (e.g., elements within a vector) to be processed 
in parallel is referred to as data level parallelism


• In general, the most common type of data-level parallelism is single-instruction multiple-
data (SIMD) ➡ the common example of this is to add the elements of two vectors 
together


• To construct a vector register, data needs to be contiguous in memory so that a small 
number of loads can retrieve all of the data to a single register ➡ vector registers are 
often larger than a data word!


• Because fetching data to a large vector register is larger than a word, it often requires 
several fetches to memory to load into a single register ➡ memory bandwidth has been 
and remains a bottleneck! 
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The GPU Programming Model
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CPU
GPU

Memory

Shared

GPU Only

GPU 
Instructions

GPU Data

import pycuda.autoinit 
import pycuda.driver as drv 
import numpy 

from pycuda.compiler import SourceModule 
mod = SourceModule(“““ 
__global__ void multiply(float *dest, float *a, float *b) { 

const int i = threadIdx.x; 
dest[i] = a[i] * b[i]; 

} 
”””) 

a = numpy.random.randn(400).astype(numpy.float32) 
b = numpy.random.randn(400).astype(numpy.float32) 

dest  = numpy.zeros_like(a) 
mod.get_function(“multiply”)(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1), grid=(1, 1)) 

print(dest)

In NVIDIA’s CUDA 
language, GPU code 

written like C code that is 
distributed across threads

The inputs to these C 
functions are passed explicitly 
as inputs and outputs to the 
driver, which is implemented 

in the operating system

The data (and 
thread spawning) is 

organized into 
blocks and grids
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The Link Between GPUs and Neural Networks

• Neural networks can be encoded as matrices ➡ each layer of the network as 
a dimension of the matrix, and the data at that index represents the weight of 
the connection


• If we have large models with lots of connections, then we need to perform a 
large number of matrix multiplication operations


• In general, if the data is encoded as a floating point value, then we can 
measure the overall performance of the GPU as the number of FLOPS (float 
point operations per second)
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What are some of the performance bottlenecks for 
processing on a GPU? Think about the construction 

and organization of the data, how data is 
communicated around the system, etc…
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Chat with your neighbor(s)!
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Takeaways

• GPUs depend on large degrees of parallelizability and vectorizability in the 
development of an application


• To communicate data between a processor and GPU, there needs to be a 
special instruction set for instructions to be compiled down to and a location 
for these instructions to be read from


• Bottlenecks in GPU computation come from data communication and lack of 
alignment in data layouts


• Parallelizability in the GPU leverages the lack of dependencies between 
computations in deriving a larger goal!
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