A (Brief) Overview of GPUs

HW3 due Monday at
midnight;
Colloquium at Mudd today!

<

_J

CS181CA-PO: Computer Architecture

Fall 2025, GPU Overview

(¢

D:F TUPCI3254M

FCC |

o

A AN R R P R

o™

AN

MPEG CONNECTOR

CENILTVAW=

ANOWVIQ

—
o0

v

T

” v

-
&|
g

2 R

L

)
o
v
)
o
onl
~
[
»
[T

S3 VIRGE

()
=
WVu_
0N =
g3 2
= <
hmv%
v C o
£ G Q
wdm
r O O
g |
Q= O
D2 c
c a
mem
Q)
_ Y,

ASRock Motherboard

(integrated graphics)

Fall 2025, GPU Overview

Computer Architecture

CS181CA-PO

Outline

* Brief overview of data-level parallelism
 From vector processors to GPUs

 GPU programming

CS181CA-PO: Computer Architecture 3 Fall 2025, GPU Overview

Westinghouse

-

Can we get more compute by
adding more ALUs to the
system, where each ALU has
distinct data to work on?

>

UNIVERSITY OF

ILLINOIS

URBANA-CHAMPAIGN

~

é Graphics require extensive

simultaneous parallel data
operations! Extend the ISA with
single-instruction multiple data

\ (SIMD) instructions)

The (Way too Brief) Origin of GPUs

~

fGraphics accelerators become
mainstream extensions to

commodity devices (attached

via I/0); often uses SIMT (thread)

\ Instruction extensions

Image credit: https://
en.wikipedia.org/wiki/

Vector_processor

J

CS181CA-PQO: Computer Architecture

en.wikipedia.org/wiki/
MMX_ (instruction_set)

4

[Image credit: https://

[2000s]

4)
From our textbook: “GPUs and
CPUs do not go back in
computer architecture
genealogy to a common
ancestor; there is no “missing

link” that explains both”
_ _J

Fall 2025, GPU Overview

* Any application that requires linear algebra-
like routines is going to exhibit “DAXPY”-
like behavior

e |f this Is the case, then there are no data
dependences between operations (&4 the
operation Is vectorizable

e Each element of the vectorizable instruction
can be computed individually and then the

result can be aggregated 4 this algorithmic
technique Is called scatter-gather

CS181CA-PQO: Computer Architecture 5

The Key ldea of Vector Processing

DAXPY

Y=a*"X+Y

_ J

-

-

for (inti=0;i<mn;i++) {
Y[i] =a * X[i] + Y[i];
}

J

el enof— >
.

o] —

Fall 2025, GPU Overview

Chat with your neighbor(s)!

Suppose we wanted to implement an instruction for “vector add”
that takes two vectors A and B as Inputs and produces a vector as
output. How would the instruction be constructed? Where would A

and B be stored? How would the compute units be utilized?

Just like before, we
can encode vector
Instructions as an

instruction in the ISA
with its own opcode
and inputs

CS181CA-PO: Computer Architecture

Once data is fetched
from the special
“vector register”, the
contents are split
(wires redirected) to the
various compute units!

If we want to store an entire
vector in a register, then we
will need a special type of
vector register in which
multiple data can be stored!

6 Fall 2025, GPU Overview

Data Level Parallelism

* The notion of encoding several variables (e.g., elements within a vector) to be processed
in parallel is referred to as data level parallelism

* |n general, the most common type of data-level parallelism is single-instruction multiple-
data (SIMD) g the common example of this is to add the elements of two vectors

together

* Jo construct a vector register, data needs to be contiguous in memory so that a small
number of loads can retrieve all of the data to a single register 4 vector registers are

often larger than a data word!

 Because fetching data to a large vector register is larger than a word, it often requires
several fetches to memory to load into a single register &d memory bandwidth has been

and remains a bottleneck!

CS181CA-PO: Computer Architecture 7 Fall 2025, GPU Overview

GPU
Instructions

CS181CA-PO: Computer Architecture

GPU

Memory

€ GPU Data

The GPU Programming Model

N N\)
The inputs to these C
The data (and

functions are passed explicitly I
as inputs and outputs to the thread spawn_mg) IS
driver, which is implemented organized into

In NVIDIA’s CUDA
language, GPU code
written like C code that is

distributed across threads in the operating system blocks and grids
g J < RN Y,
-
import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule(“““
__global__ void multiply(float *dest, float *a, float *b) {
const int i = threadIdx.x;
dest[i] = a[i] * b[i];
}
77””)
a = numpy.random.randn(400).astype(numpy.float3R)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
mod.get_function(“multiply”)(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1), grid=(1, 1))
print(dest)
-

J

Fall 2025, GPU Overview

The Link Between GPUs and Neural Networks

 Neural networks can be encoded as matrices s each layer of the network as

a dimension of the matrix, and the data at that index represents the weight of
the connection

* |f we have large models with lots of connections, then we need to perform a
large number of matrix multiplication operations

* |n general, if the data is encoded as a floating point value, then we can
measure the overall performance of the GPU as the number of FLOPS (float

point operations per second)

CS181CA-PO: Computer Architecture 9 Fall 2025, GPU Overview

Chat with your neighbor(s)!

What are some of the performance bottlenecks for
processing on a GPU? Think about the construction
and organization of the data, how data is
communicated around the system, etc...

CS181CA-PO: Computer Architecture 10 Fall 2025, GPU Overview

Takeaways

 GPUs depend on large degrees of parallelizability and vectorizability in the
development of an application

 To communicate data between a processor and GPU, there needs to be a
special instruction set for instructions to be compiled down to and a location
for these instructions to be read from

* Bottlenecks in GPU computation come from data communication and lack of
alignment in data layouts

» Parallelizability in the GPU leverages the lack of dependencies between
computations in deriving a larger goal!

CS181CA-PO: Computer Architecture 11 Fall 2025, GPU Overview

