
CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Advanced Instruction-Level
Parallelism Methods

1

No class Friday;
Friday Colloquium on Zoom;

Check In 6 on Monday;
HW3 to be graded manually

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

(From Monday) Formalizing the Task of Spectre Adversary

• Goal: leak sensitive information (e.g., secret keys) that may otherwise be protected by
the software control-flow through the microarchitectural state

• Phase 1 (setup): find a Spectre gadget in some source around secret data to exploit;
mistrain the branch predictor to allow unintended speculative execution during the
attack; prepare the covert channel (e.g., the cache side channel) to leak the sensitive
information at the end of the attack

• Phase 2 (trigger attack): force the victim to execute the unintended code in the Spectre
gadget speculatively such that the sensitive data is loaded into the shared state to be
leaked from the covert channel

• Phase 3 (leaking the secret): sensitive data is recovered via the covert channel (e.g.,
perform a flush+reload attack or prime+probe attack on a shared cache)

2

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

CPU

L1 Cache

L2 Cache L3 Cache

Main Memory

void fn(x) {
if (arr[x] < arr[y]) {

z = data[arr[x]];
} else …

}

arr 4 7 1 3

data A B C D

😈

1. Use the address of
the key as x

2. Speculatively set z to
the data at the index
of the secret key

3. The data of the secret
is the address of the
beginning of data
minus the offset of
the fetched data

4. Read the address of
z and compute the
contents of the secret
key!

= supersecretdata

arr[-1] =
Array Size

Address = data +
supersecretdata

(From Monday) The “Speculative” Memory Hierarchy

3

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Tying Data Contents to Memory Location

04 07 01 03 00 00 00 0A 0B 0C 0D 00 00 supersecretdata Co

0xff00 0xff01 0xff02 0xff03 0xff04 0xff05 0xff06 0xff07 0xff08 0xff09 0xff0a 0xff0b 0xff0c 0xff0d

arr data 🔑

CPU

void fn(x) {
if (arr[x] < arr[y]) {

z = data[arr[x]];
} else …

}

L3 CacheSuppose we wanted to
steal the contents of

arr[2]…

0B

0xff08

Can we read the
contents of the block?
No! We can only read

the address of the
block…

What was the data at arr[2]? The
contents are address of read block -

address of the start of data4

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Think about the attack holistically. How scared of this
attack are you? If you were working at a chip

fabrication company, how may this change (or not
change) your perspective?

5

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

(Opinion) Scariness is a Function of Sensitivity

6

Image Credit: https://dl.acm.org/
doi/pdf/

10.1145/3620666.3651382

Finding vulnerable code is easier
when you know which gadgets you

are looking for…

Takeaway: there is so much code
out there… if there exists a

vulnerability in hardware to exploit,
then there is probably sensitive code

that depends on it

For fun: https://leaky.page/

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Mitigations

• Preventing speculative execution: if the attack is predicated on speculatively executing unintended
code, can we turn off processor speculation?

• ➡ speculation has become a fundamental component of processor execution (embedded into
designs since the late 1970s), so its performance benefits are expected in program performance

• ➡ can we conditionally turn off speculation around sensitive data or gadgets? Academically, yes.
In practice, unclear!

• Preventing access to secret data: can we enforce bounds checking in hardware to avoid illegal secret
accesses?

• ➡ software is insufficient if hardware can execute unintended code

• ➡ the proposal with the most headway is called capabilities which requires a complete end-to-end
redesign of the processor and memory system

7

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Advanced Instruction-Level Parallelism

• The parallelism described by filling our processor pipeline is referred to as
“instruction-level parallelism” (or ILP)

• ➡ the more we can fill the pipeline with instructions per cycle, the better
parallelism we can achieve

• We can exploit ILP via two primary means: dynamically at runtime in hardware
or statically at compile time in software

8

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP via Software

• In theory, loops that operate on distinct elements of the array
can be performed completely in parallel!

• In practice, compiling this code down to assembly directly will
have control hazards ➡ limits the amount of ILP in the
processor!

• The practice of loop unrolling can be implemented by the
compiler to reduce the number of control instructions (and
control hazards as a result)

• The drawback of loop unrolling is that your binary size
increases as a result of more instructions! Longer loops mean
more instructions to explicitly define in the binary itself

for (int i = 0; i < 4; i++) {
x[i] = x[i] + y[i];

}

x[0] = x[0] + y[0];
x[1] = x[1] + y[1];
x[2] = x[2] + y[2];
x[3] = x[3] + y[3];

9

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP via Software

• There are things that we can write in our software to give
the compiler hints of optimization strategies to reduce
control hazards in hardware

• The inline keyword in C/C++ allows you to declare a
function that gets “stamped” into the body of any calling
function in the raw assembly ➡ no unconditional jumps
to the function itself!

• Similar drawbacks to loop unrolling, multiple copies of
the same instructions throughout the binary means that
the binary size increases as a result

inline void fn() { };

10

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

To maximize ILP via software, we ask the compiler to increase the
binary size to explicitly do things sequentially that would be difficult

to predict in hardware. To what extent should you care about the
size of your executable binaries? Are there contexts in which you

may care more or less?

11

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP with Hardware

• Data Hazards

• Control Hazards

• Unrealized CPI

• Mitigate dependencies

• Forwarding (for many cases)

• Software ILP and Speculation

• Issue multiple instructions per cycle

• Dynamic instruction reordering

Problem Solution

12

CS181CA-PO: Computer Architecture Fall 2025, Advanced Instruction-Level Parallelism

Takeaways

13

timeline

memory

processor

What’s next? Scaling
computation beyond

a single core

