Advanced Instruction-Level
Parallelism Methods

4)
No class Friday;

Friday Colloquium on Zoom;
Check In 6 on Monday;
KHW3 to be graded manuallyj

CS181CA-PO: Computer Architecture 1 Fall 2025, Advanced Instruction-Level Parallelism

(From Monday) Formalizing the Task of Spectre Adversary

* (Goal: leak sensitive information (e.g., secret keys) that may otherwise be protected by
the software control-flow through the microarchitectural state

 Phase 1 (setup): find a Spectre gadget in some source around secret data to exploit;
mistrain the branch predictor to allow unintended speculative execution during the
attack; prepare the covert channel (e.g., the cache side channel) to leak the sensitive
information at the end of the attack

* Phase 2 (trigger attack): force the victim to execute the unintended code in the Spectre
gadget speculatively such that the sensitive data is loaded into the shared state to be
leaked from the covert channel

* Phase 3 (leaking the secret): sensitive data is recovered via the covert channel (e.g.,
perform a flush+reload attack or prime+probe attack on a shared cache)

CS181CA-PO: Computer Architecture 2 Fall 2025, Advanced Instruction-Level Parallelism

(From Monday) The “Speculative” Memory Hierarchy

void fn (X) { : ::::.ee ktg; ::;:I(ress of
if (arr[x] <arr[y]) { . Speculatively set z to
CPU < z = datal[arr[x]]; the data at the index
= supersecretdata } else ... of the secret key
) : The data of the secret
- / Is the address of the

beginning of data
m minus the offset of

the fetched data

Read the address of

L2 Cache L3 Cache z and compute the
Q O contents of the secret
key!
4)
| arr[-1]=
arr | 4 Array Size
Main Memo > - ~
Address = data +
data | A < ksupersecretdata,)

CS181CA-PO: Computer Architecture 3 Fall 2025, Advanced Instruction-Level Parallelism

Tying Data Contents to Memo

-

ry Location

CS181CA-PO: Computer Architecture

4)
What was the data at arr[2]7? The
contents are address of read block -
address of, the start of data

void fn(x) {
d R if (arr[x] <arr[y]) {
Suppose we wanted to CPU < Z = da,ta[a,rr[X]]; L3 Cache
steal the contents of 1
arr[&]... } else ...
J U } J
(R [))
arr d t g Can we read the
L) . ata contents of the block?)
No! We can only read
the address of the
-\ /- : ; _ block... , : ;
04 07 01 03 ‘ 00 ‘ 00 ‘ 00 ‘ 0A ‘ 0B 0C 0D 00 ‘ 00 |:
Oxff00 Oxff01 Oxff02 Oxff03 Oxff04 OxffO5 Oxffoe OxffO7 OxffO8 Oxff09 Oxff0la OxffOb OxffOc OxffOd

Fall 2025, Advanced Instruction-Level Parallelism

Chat with your neighbor(s)!

Think about the attack holistically. How scared of this
attack are you? If you were working at a chip
fabrication company, how may this change (or not
change) your perspective?

CS181CA-PQO: Computer Architecture 5 Fall 2025, Speculative Execution Attacks (Part 2)

(Opinion) Scariness is a Function of Sensitivity

Finding vulnerable code is easier
when you know which gadgets you

are looking for...

-

_

~

For fun: https://leaky.page/

J

CS181CA-PQO: Computer Architecture

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

void looped(uint8_t xplaintext, uint8_t *ciphertext, AES_KEY *key)
{

__m1281 state = _mm_loadu_si128((__m1281i *)plaintext);

_._m1281i *rd_key = (__m1281 *)key->rd_key;

state = _mm_xor_si128(state, *(rd_key++));

for (size_t 1 = 1; 1 < key->rounds; i++) {

state = _mm_aesenc_sil128(state, *(rd_key++));

00O ~3 O U W W N =

}

state = _mm_aesenclast_si128(state, *rd_key);
_mm_storeu_si128((__m128i *)ciphertext, state);

}

[
- O O

Listing 1. Pseudo Code for Looped Implementation of AES
ECB Encryption Using AES-NL

- Y,
~)
Image Credit: https://dl.acm.org/
doi/pdf/
10.1145/3620666.3651382
- Y,

Takeaway: there is so much code
out there... Iif there exists a
vulnerability in hardware to exploit,
then there is probably sensitive code
that depends on it

Fall 2025, Speculative Execution Attacks (Part 2)

Mitigations

* Preventing speculative execution: if the attack is predicated on speculatively executing unintended
code, can we turn off processor speculation?

» [LJ speculation has become a fundamental component of processor execution (embedded into
designs since the late 1970s), so its performance benefits are expected in program performance

. can we conditionally turn off speculation around sensitive data or gadgets”? Academically, yes.
In practice, unclear!

* Preventing access to secret data: can we enforce bounds checking /in hardware to avoid illegal secret
accesses?

e J software is insufficient if hardware can execute unintended code

° the proposal with the most headway is called capabilities which requires a complete end-to-end
redesign of the processor and memory system

CS181CA-PQO: Computer Architecture 7 Fall 2025, Speculative Execution Attacks (Part 2)

Advanced Instruction-Level Parallelism

* The parallelism described by filling our processor pipeline is referred to as
“instruction-level parallelism” (or ILP)

» [.J the more we can fill the pipeline with instructions per cycle, the better
parallelism we can achieve

* We can exploit ILP via two primary means: dynamically at runtime in hardware
or statically at compile time in software

CS181CA-PO: Computer Architecture 8 Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP via Software

* |n theory, loops that operate on distinct elements of the array
can be performed completely in parallel!

4)
* |n practice, compiling this code down to assembly directly will for (int i=0; 1 < 4; i++) {

have control hazards &d limits the amount of ILP in the x[i] = x[i] + y[i];

processor! B)

* The practice of loop unrolling can be implemented by the — Ry
compiler to reduce the number of control instructions (and chl): =X;C1): Y ;Cl):;
x[1]=x[1]+y[1];
control hazards as a result) X[2] = x[2] + y[2]

| x[3]=x[3] +y[3]; :

* The drawback of loop unrolling is that your binary size
iIncreases as a result of more instructions! Longer loops mean
more instructions to explicitly define in the binary itself

CS181CA-PO: Computer Architecture 9 Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP via Software

* There are things that we can write in our software to give
the compiler hints of optimization strategies to reduce
control hazards in hardware

 The inline keyword in C/C++ allows you to declare a
function that gets “stamped” into the body of any calling | ®lnevoidmO { 1k
function In the raw assembly kd no unconditional jumps U y
to the function itself!

* Similar drawbacks to loop unrolling, multiple copies of
the same Iinstructions throughout the binary means that
the binary size increases as a result

CS181CA-PO: Computer Architecture 10 Fall 2025, Advanced Instruction-Level Parallelism

Chat with your neighbor(s)!

To maximize ILP via software, we ask the compiler to increase the
binary size to explicitly do things sequentially that would be difficult
to predict in hardware. To what extent should you care about the
size of your executable binaries? Are there contexts in which you
may care more or less?

CS181CA-PO: Computer Architecture 11 Fall 2025, Advanced Instruction-Level Parallelism

Maximizing ILP with Hardware

Problem Solution
 Data Hazards Forwarding (for many cases)
 Control Hazards o Software ILP and Speculation
* Unrealized CPI * |ssue multiple instructions per cycle
 Mitigate dependencies Dynamic instruction reordering

CS181CA-PO: Computer Architecture 12 Fall 2025, Advanced Instruction-Level Parallelism

Takeaways

(")
processor
_ v
()
memory
_ v

CS181CA-PO: Computer Architecture

timeline

13

What’s next? Scaling
computation beyond
a single core

Fall 2025, Advanced Instruction-Level Parallelism

