
CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Speculative Execution Attacks 
(Part 2)

1

No class Friday; 
Friday Colloquium on Zoom; 

Check In 6 next Monday



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Outline

• Revisiting the Spectre Attack setup


• Improving the Spectre Attack


• Mitigations

2



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

(From Friday) Slow to Resolve Branches

Fetch Decode Execute Memory Memory Memory

Fetch Decode Execute

lw

bne

jmp Fetch Decode Execute Memory Writeback

…

Execute Execute …

Cache miss

Can’t resolve hazard

Predicted Target

…

Problem! We don’t want to 
writeback the state of an 

instruction if we don’t know that 
this instruction was the right one 

to execute!

Speculative processors have a 
temporary buffer where data is written 

back to called the “Reorder Buffer” 
(ROB), which decouples instruction 

writeback from commit

3



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

(From Friday) Unintended Behavior from “Safe” Code

void fn(x) { 
if (x < size) { 

y = array[x]; 
} else … 

}

Basically a buffer 
overflow vulnerability!

If the branch predictor will 
guess that the branch is not 
taken then the “if” condition 

will execute speculatively

An adversary can pass an 
input value x where x > size 

which will lead to a load from 
an arbitrary location in 

memory… bad!

Is this dangerous? From our 
cache side channels, all that 
the adversary can leak is that 

an address exists in the 
cache, not its data…

4



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Components of a Speculative Execution Attack

• Processors predict the next instructions to execute, and incorrect predictions 
need to be rolled back


• Branch predictors track the behavior of programs dynamically at runtime, and 
can therefore be adversarially trained for what “expected” input behaviors 
could look like


• If a branch instruction depends on data from memory and the memory system 
is slow, then lots of execution will be performed speculatively while waiting for 
the branch to be resolved


• Once the unintended code has executed, a side channel needs to exist for the 
adversary to leak out the state of the data

5



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

We have been using the red code block as an example 
of a function susceptible to speculative execution 

attacks. What could we do to transform this code into 
the ideal “Spectre Gadget”?

Chat with your neighbor(s)!

void fn(x) { 
if (x < size) { 

y = array[x]; 
} else … 

}

void fn(x) { 
if (arr[x] < arr[y]) { 

z = data[arr[x]]; 
} else … 

}

Insight: We can only leak 
addresses via side 

channels (not data itself). 
If our data is an address 

then we can leak it!

6



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

The “Speculative” Memory Hierarchy

CPU

L1 Cache

L2 Cache L3 Cache

Main Memory

void fn(x) { 
if (arr[x] < arr[y]) { 

z = data[arr[x]]; 
} else … 

}

arr 4 7 1 3

data A B C D

😈

1. Use the address of 
the key as x 

2. Speculatively set z to 
the data at the index 
of the secret key 

3. The data of the secret 
is the address of the 
beginning of data 
minus the offset of 
the fetched data 

4. Read the address of 
z and compute the 
contents of the secret 
key!

= supersecretdata

arr[-1] = 
Array Size

Address = data + 
supersecretdata

7



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Formalizing the Task of Spectre Adversary

• Goal: leak sensitive information (e.g., secret keys) that may otherwise be protected by 
the software control-flow through the microarchitectural state 


• Phase 1 (setup): find a Spectre gadget in some source around secret data to exploit; 
mistrain the branch predictor to allow unintended speculative execution during the 
attack; prepare the covert channel (e.g., the cache side channel) to leak the sensitive 
information at the end of the attack


• Phase 2 (trigger attack): force the victim to execute the unintended code in the Spectre 
gadget speculatively such that the sensitive data is loaded into the shared state to be 
leaked from the covert channel


• Phase 3 (leaking the secret): sensitive data is recovered via the covert channel (e.g., 
perform a flush+reload attack or prime+probe attack on a shared cache)

8



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Think about the attack holistically. How scared of this 
attack are you? If you were working at a chip 

fabrication company, how may this change (or not 
change) your perspective?

9

Chat with your neighbor(s)!



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

(Opinion) Scariness is a Function of Sensitivity

10

Image Credit: https://dl.acm.org/
doi/pdf/

10.1145/3620666.3651382

Finding vulnerable code is easier 
when you know which gadgets you 

are looking for…

Takeaway: there is so much code 
out there… if there exists a 

vulnerability in hardware to exploit, 
then there is probably sensitive code 

that depends on it



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Mitigations

• Preventing speculative execution: if the attack is predicated on speculatively executing unintended 
code, can we turn off processor speculation?


• ➡ speculation has become a fundamental component of processor execution (embedded into 
designs since the late 1970s), so its performance benefits are expected in program performance


• ➡ can we conditionally turn off speculation around sensitive data or gadgets? Academically, yes. 
In practice, unclear!


• Preventing access to secret data: can we enforce bounds checking in hardware to avoid illegal secret 
accesses?


• ➡ software is insufficient if hardware can execute unintended code


• ➡ the proposal with the most headway is called capabilities which requires a complete end-to-end 
redesign of the processor and memory system

11



CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (Part 2)

Takeaways

• Adversaries can exploit hardware vulnerabilities to work around safe 
programming practices in software ➡ they are more complex, so you should 
still use safe programming practices in software!!


• The mitigation strategies for speculative execution attacks are difficult to 
deploy and addressing these attacks is very much an open problem!


• Without speculation, our processors could be hugely penalized by control 
hazards and these attacks are a byproduct of attempting to increase 
instruction level parallelism despite potential delays!

12


