Speculative Execution Attacks
(Part 2)

No class Friday;
Friday Colloquium on Zoom;
Check In 6 next Monday

U _J

CS181CA-PO: Computer Architecture 1 Fall 2025, Speculative Execution Attacks (Part 2)

Outline

* Revisiting the Spectre Attack setup
* Improving the Spectre Attack

 Mitigations

CS181CA-PQO: Computer Architecture 2 Fall 2025, Speculative Execution Attacks (Part 2)

(From Friday) Slow to Resolve Branches

p
1w Fetch Decode Execute Memory | Memory | Memory Cache missJ
_
a)
bne Fetch Decode Execute Execute Execute Can’t resolve hazard
U v,
()
jmp Fetch Decode | Execute | Memory |Writeback Predicted Target
u _J
4) ()
Problem! We don’t want to Speculative processors have a
writeback the state of an temporary buffer where data is written
instruction if we don’t know that back to called the “Reorder Buffer”
this instruction was the right one (ROB), which decouples instruction
to execute! writeback from commit
_ v _ v,

CS181CA-PO: Computer Architecture 3 Fall 2025, Speculative Execution Attacks (Part 2)

(From Friday) Unintended Behavior from “Safe” Code

i) void fn(x) {
if (x <sgize) {

Basically a buffer y = array[x];

overflow vulnerability!

} else ...
- / }
- J
() (A) (_ >)
If the branch predictor will “An adversary can pass a}n Is this d_angerous. From our
. iInput value x where x > size cache side channels, all that
guess that the branch is not . . :
e 93 s which will lead to a load from| |the adversary can leak is that
taken then the “if” condition : . L
. : an arbitrary location in an address exists in the
will execute speculatively :
. J memory... bad! L cache, not its data... ’

CS181CA-PO: Computer Architecture 4 Fall 2025, Speculative Execution Attacks (Part 2)

Components of a Speculative Execution Attack

* Processors predict the next instructions to execute, and incorrect predictions
need to be rolled back

* Branch predictors track the behavior of programs dynamically at runtime, and
can therefore be adversarially trained for what “expected” input behaviors
could look like

* |f a branch instruction depends on data from memory and the memory system
IS slow, then lots of execution will be performed speculatively while waiting for
the branch to be resolved

e Once the unintended code has executed, a side channel needs to exist for the
adversary to leak out the state of the data

CS181CA-PQO: Computer Architecture 5 Fall 2025, Speculative Execution Attacks (Part 2)

Chat with your neighbor(s)!

We have been using the red code block as an example
of a function susceptible to speculative execution
attacks. What could we do to transform this code into
the ideal “Spectre Gadget”?

4) () ()

void fn(x) { void fn(x) { Insight: We can only leak
if (x <size) { if (arr[x] <arr[y]) { addresses via side
vy = array[x]; z = data[arr[x]]; channels (not data itself).
} else ... } else ... If our data is an address
} } then we can leak it!

& _J \ J \ J

CS181CA-PO: Computer Architecture 6 Fall 2025, Speculative Execution Attacks (Part 2)

The “Speculative” Memory Hier

s

<
= supersecretdata

&

void fn(x) {
if (arr[x] <arr[y]) {
z = data[arr[x]];
} else ...

)

o

L2 Cache
O

CS181CA-PQO: Computer Architecture

L3 Cache

archy

arr | 4

Use the address of
the key as x
Speculatively set z to
the data at the index
of the secret key

The data of the secret
Is the address of the
beginning of data

minus the offset of
the fetched data
Read the address of
z and compute the
contents of the secret
key!

4)
arr[-1]=

Main Memo

data | A

i Array Size ’

()
Address = data +

<

ksu]persecretdafoa.
v

Fall 2025, Speculative Execution Attacks (Part 2)

Formalizing the Task of Spectre Adversary

* (Goal: leak sensitive information (e.g., secret keys) that may otherwise be protected by
the software control-flow through the microarchitectural state

 Phase 1 (setup): find a Spectre gadget in some source around secret data to exploit;
mistrain the branch predictor to allow unintended speculative execution during the
attack; prepare the covert channel (e.g., the cache side channel) to leak the sensitive
information at the end of the attack

* Phase 2 (trigger attack): force the victim to execute the unintended code in the Spectre
gadget speculatively such that the sensitive data is loaded into the shared state to be
leaked from the covert channel

* Phase 3 (leaking the secret): sensitive data is recovered via the covert channel (e.g.,
perform a flush+reload attack or prime+probe attack on a shared cache)

CS181CA-PQO: Computer Architecture 8 Fall 2025, Speculative Execution Attacks (Part 2)

Chat with your neighbor(s)!

Think about the attack holistically. How scared of this
attack are you? If you were working at a chip
fabrication company, how may this change (or not
change) your perspective?

CS181CA-PQO: Computer Architecture 9 Fall 2025, Speculative Execution Attacks (Part 2)

(Opinion) Scariness is a Function of Sensitivity

Finding vulnerable code is easier
when you know which gadgets you
are looking for...

CS181CA-PQO: Computer Architecture

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

void looped(uint8_t xplaintext, uint8_t *ciphertext, AES_KEY *key)
{
__m1281 state = _mm_loadu_si128((__m1281i *)plaintext);
_._m1281i *rd_key = (__m1281 *)key->rd_key;
state = _mm_xor_si128(state, *(rd_key++));
for (size_t 1 = 1; i < key->rounds; i++) {
state = _mm_aesenc_sil128(state, *(rd_key++));

}

state = _mm_aesenclast_si128(state, *rd_key);
_mm_storeu_si128((__m128i *)ciphertext, state);

O O 00N N e W N

WU —

}

Listing 1. Pseudo Code for Looped Implementation of AES
ECB Encryption Using AES-NL

10

- Y,
~)
Image Credit: https://dl.acm.org/
doi/pdf/
10.1145/3620666.3651382
- Y,

Takeaway: there is so much code
out there... Iif there exists a
vulnerability in hardware to exploit,
then there is probably sensitive code
that depends on it

Fall 2025, Speculative Execution Attacks (Part 2)

Mitigations

* Preventing speculative execution: if the attack is predicated on speculatively executing unintended
code, can we turn off processor speculation?

» [LJ speculation has become a fundamental component of processor execution (embedded into
designs since the late 1970s), so its performance benefits are expected in program performance

. can we conditionally turn off speculation around sensitive data or gadgets”? Academically, yes.
In practice, unclear!

* Preventing access to secret data: can we enforce bounds checking /in hardware to avoid illegal secret
accesses?

e J software is insufficient if hardware can execute unintended code

° the proposal with the most headway is called capabilities which requires a complete end-to-end
redesign of the processor and memory system

CS181CA-PQO: Computer Architecture 11 Fall 2025, Speculative Execution Attacks (Part 2)

Takeaways

* Adversaries can exploit hardware vulnerabilities to work around safe
programming practices in software k4 they are more complex, so you should

still use safe programming practices in software!!

* The mitigation strategies for speculative execution attacks are difficult to
deploy and addressing these attacks is very much an open problem!

* Without speculation, our processors could be hugely penalized by control
hazards and these attacks are a byproduct of attempting to increase
Instruction level parallelism despite potential delays!

CS181CA-PQO: Computer Architecture 12 Fall 2025, Speculative Execution Attacks (Part 2)

