Introducing Speculative
Execution Attacks

p
No HMC colloquium today;

HW3 Autograder to be

released this afternoon;
No class next Friday

<

o

_J

CS181CA-PO: Computer Architecture

Fall 2025, Speculative Execution Attacks (part 1)

(

&

~

For fun: https://leaky.page/

J

About speculative execution
vulnerabilities in ARM-based and Intel

CPUs

e Apple has released security updates for macOS Sierra and El Capitan with mitigations for Meltdown.

e Apple has released updates for I0S, macOS High Sierra, and Safari on Sierra and El Capitan to help

defend against Spectre.

e Apple Watch is unaffected by both Meltdown and Spectre.

Security researchers have recently uncovered security issues known by two names, Meltdown and

Spectre. These issues apply to all modern processors and affect nearly all computing devices and
operating systems. All Mac systems and 10S devices are affected, but there are no known exploits

CS181CA-PQO: Computer Architecture

s

_

Image Credit: https://
support.apple.com/en-us/
101886

J

T ——————————————

DOI:10.1145/3399742

Spectre Attacks: Exploiting
Speculative Execution

By Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom

Abstract
Modern processors use branch prediction and speculative
execution to maximize performance. For example, if the
destination of a branch depends on a memory value that is
in the process of being read, CPUs will try to guess the des-
tination and attempt to execute ahead. When the memory
value finally arrives, the CPU either discards or commits
the speculative computation. Speculative logic is unfaith-
ful in how it executes, can access the victim’s memory and
registers, and can perform operations with measurable
side effects.

Spectre attacks involve inducing a victim to speculatively
perform operations that would not occur durine correct

attacks, which do not require external measurement equip-
ment. Although some attacks exploit software logic errors,
other software attacks leverage hardware properties to
infer sensitive information. Attacks of the latter type include
microarchitectural attacks exploiting cache timing*® ' and
branch prediction history.! Software-based techniques
have also been used to induce computation errors, such as
fault attacks that alter physical memory" or internal CPU
values.”

Several microarchitectural design techniques have facili-
tated the increase in processor speed over the past decades.
One such advancement is speculative execution, which is
widelv used to increase performance and involves havineg

~

Image Credit: https://
dl.acm.org/doi/pdf/
10.1145/3399742

_J

Fall 2025, Speculative Execution Attacks (part 1)

Outline

* Revisiting branch prediction
* |ntroducing speculative execution attacks

e Feedback form

CS181CA-PQO: Computer Architecture 3 Fall 2025, Speculative Execution Attacks (part 1)

Execution with Branch Prediction

Fetch

Decode

Fetch

Execute

Decode

Memo

Execut

iteback

Memory | Writeback

CS181CA-PQO: Computer Architecture

\

4

Fetch

Decode

Execute

Memory | Writeback

Fall 2025, Speculative Execution Attacks (part 1)

nASA7

matrix300

tomcatv

doduc
2]
=
©
_g .
£ spice
c
@
L0
(o))}
f
8 PpPPp
L
o
)
gcc
espresso
eqntott

= 1(‘;/0 B 4096 entries:
(1342 2 bits per entry
. o B Unlimited entries:
842 2 bits per entry
] 0% [0 1024 entries:
1% 2.2
0
— 5%
5%
5%
— 9%
5% o
0
— 9%
5% %
0
— 12%
11%
| 11%
)
4%
e 18%
- 18%
0
— 10%
5o, 10%
0

I 1 | I 1 I I

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed by a noncor-
relating 2-bit predictor with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024
entries. Although these data are for an older version of SPEC, data for more recent SPEC benchmarks would show

similar differences in accuracy.

CS181CA-PQO: Computer Architecture

From Wednesday: Effectiveness of Branch Prediction

4%_ ..

Correlating predictors
3% B . S|

Tournament predictors
2% Bl | 00000000 A0000nO0BEO000DO00E00E00A0ACONC0AE0A 0N S00A00 0000 E00000 00000500 00 E 00000 G0E 000020600200 O0E 00 E00C 0000 E00C00E00C00CH0E00CO0CH0E00S00CH0C00d

Conditional branch misprediction rate

1%— ...

0%

I | | I I | | I I I I I 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 51
Total predictor size

Figure 3.6 The misprediction rate for three different predictors on SPEC89 versus the size of the predictor in
kilobits. The predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although these data are
for an older version of SPEC, data for more recent SPEC benchmarks show similar behavior, perhaps converging
to the asymptotic limit at slightly larger predictor sizes.

()
Image Credit: CA: AQA

(course textbook)
_ _J

Fall 2025, Speculative Execution Attacks (part 1)

Chat with your neighbor(s)!

Think about the instructions executed before we
detect the true outcome of the branch. What are these
instructions”? What are the implications of having them

In the pipeline?

CS181CA-PQO: Computer Architecture 6 Fall 2025, Speculative Execution Attacks (part 1)

Slow to Resolve Branches

if (Carr[O] ==1) { lw ... //fetch arr[O]

mlQ; bne ... //if
} else { jmp ... //callfnl
Adder ma(); jmp ... // skip else
MUX] jmp// call fn2
N/

Adder

| Relg::jillseter N > ALU . Data
— MUX (= Memory
S S |
c o
e O a)
T 8 If this is a cache miss, we will
o 3 have many other instructions in
b the pipeline! The next instruction
— TN will be predicted by the branch
<+ predictor
MUX H _J

CS181CA-PO: Computer Architecture 7 Fall 2025, Speculative Execution Attacks (part 1)

(

Slow to Resolve Branches

p
Iw Fetch Decode Execute Memory | Memory | Memory Cache missJ
_
a)
bne Fetch Decode Execute Execute Execute Can’t resolve hazard
U v,
()
jmp Fetch Decode | Execute | Memory |Writeback Predicted Target
u _J
4) ()
Problem! We don’t want to Speculative processors have a
writeback the state of an temporary buffer where data is written
instruction if we don’t know that back to called the “Reorder Buffer”
this instruction was the right one (ROB), which decouples instruction
to execute! writeback from commit
. v - v,

CS181CA-PO: Computer Architecture 8 Fall 2025, Speculative Execution Attacks (part 1)

The Pitfalls of a Speculative Processor

 Branch predictors work from dynamic application behavior, as a result an
adversary can train a branch predictor to guess the wrong side of an if-

statement

 When executing a mispredicted branch in a transient state (e.g., when the
processor is unsure which side of the branch is the true outcome), there are

still implications on the memory system

» Often times, conditional branches are used for safety checks!

CS181CA-PQO: Computer Architecture 9 Fall 2025, Speculative Execution Attacks (part 1)

Chat with your neighbor(s)!

The below code is vulnerable to a Spectre variant 1
attack. Think about what is happening in the processor
to execute this program. What features might an
adversary exploit and what information can they leak?

-

&

Basically a buffer
overflow vulnerability!

>

v

CS181CA-PO: Computer Architecture

s

_

void fn(x) {
if (x <size) {
y = array[Xx];
} else ...

)

~

10

Fall 2025, Speculative Execution Attacks (part 1)

The Premise of a Spectre Attack

* Adversary Goal: use the underlying microarchitectural state as a covert
channel 1o get unintended code to leak secret information to an adversary

 The adversary will look for gadgets in the program state that will allow the
processor to execute unintended instructions in a transient state

 Even if these instructions are not committed, accessed data will appear in the
shared memory system

e For now, we should still be safe because the side channel attacks in the
memory system only allow us to see the addresses in the memory system
rather than the data contents itself... so no worries?

CS181CA-PQO: Computer Architecture 11 Fall 2025, Speculative Execution Attacks (part 1)

Takeaways

 When executing our programs, even code that we do _ .
t intend to execute mav still be in the https://forms.cloud.microsoft/r/
no | y WFV2mjE3ih
microarchitectural state

» Adversaries can exploit this behavior to expose
secrets via the memory system or the ROB

* When designing for efficiency (e.g., speculation),
security often falls by the wayside

 We cannot leak very much yet unless there is
something meaningful to learn about the address
being in the cache state from a speculative
execution...

Exit Ticket

CS181CA-PQO: Computer Architecture 12 Fall 2025, Speculative Execution Attacks (part 1)

