
CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Introducing Speculative
Execution Attacks

1

No HMC colloquium today;
HW3 Autograder to be

released this afternoon;
No class next Friday

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Image Credit: https://
support.apple.com/en-us/

101886

Image Credit: https://
dl.acm.org/doi/pdf/
10.1145/3399742

For fun: https://leaky.page/

2

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Outline

• Revisiting branch prediction

• Introducing speculative execution attacks

• Feedback form

3

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Execution with Branch Prediction

4

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

From Wednesday: Effectiveness of Branch Prediction

Image Credit: CA: AQA
(course textbook)

5

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Think about the instructions executed before we
detect the true outcome of the branch. What are these
instructions? What are the implications of having them

in the pipeline?

Chat with your neighbor(s)!

6

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Slow to Resolve Branches

PC

In
st

ru
ct

io
n

M
em

or
y

Adder
4

Register
File

ALU

MUX

MUX

Data
Memory

D
ec

od
er

 U
ni

t

MUX

MUX

Adder

if (arr[0] == 1) {
fn1();

} else {
fn2();

}

lw … // fetch arr[0]
bne … // if
jmp … // call fn1
jmp … // skip else
jmp …. // call fn2

If this is a cache miss, we will
have many other instructions in

the pipeline! The next instruction
will be predicted by the branch

predictor

7

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Slow to Resolve Branches

Fetch Decode Execute Memory Memory Memory

Fetch Decode Execute

lw

bne

jmp Fetch Decode Execute Memory Writeback

…

Execute Execute …

Cache miss

Can’t resolve hazard

Predicted Target

…

Problem! We don’t want to
writeback the state of an

instruction if we don’t know that
this instruction was the right one

to execute!

Speculative processors have a
temporary buffer where data is written

back to called the “Reorder Buffer”
(ROB), which decouples instruction

writeback from commit

8

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

The Pitfalls of a Speculative Processor

• Branch predictors work from dynamic application behavior, as a result an
adversary can train a branch predictor to guess the wrong side of an if-
statement

• When executing a mispredicted branch in a transient state (e.g., when the
processor is unsure which side of the branch is the true outcome), there are
still implications on the memory system

• Often times, conditional branches are used for safety checks!

9

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Chat with your neighbor(s)!

void fn(x) {
if (x < size) {

y = array[x];
} else …

}

The below code is vulnerable to a Spectre variant 1
attack. Think about what is happening in the processor

to execute this program. What features might an
adversary exploit and what information can they leak?

Basically a buffer
overflow vulnerability!

10

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

The Premise of a Spectre Attack

• Adversary Goal: use the underlying microarchitectural state as a covert
channel to get unintended code to leak secret information to an adversary

• The adversary will look for gadgets in the program state that will allow the
processor to execute unintended instructions in a transient state

• Even if these instructions are not committed, accessed data will appear in the
shared memory system

• For now, we should still be safe because the side channel attacks in the
memory system only allow us to see the addresses in the memory system
rather than the data contents itself… so no worries?

11

CS181CA-PO: Computer Architecture Fall 2025, Speculative Execution Attacks (part 1)

Takeaways

• When executing our programs, even code that we do
not intend to execute may still be in the
microarchitectural state

• Adversaries can exploit this behavior to expose
secrets via the memory system or the ROB

• When designing for efficiency (e.g., speculation),
security often falls by the wayside

• We cannot leak very much yet unless there is
something meaningful to learn about the address
being in the cache state from a speculative
execution…

https://forms.cloud.microsoft/r/
WFV2mjE3ih

Exit Ticket

12

