Introducing “Transient
Execution”

Homework 3 released (due
Nov 21)!

U _J

CS181CA-PO: Computer Architecture 1 Fall 2025, Introducing Transient Execution

1} 1] | 1
Nicad o s Wi |
! |

L) m————l o | s T e R A R BT . A

| [

- —
—_—t e - 5

oo ; =
: _; 5 ~EET s

B8 B2 10 0 B B

i
§ v_‘ ..J ,‘l ,-’:.j £ Tv §

E
1& ;
‘ |
;i;‘,; mi.l
7 SN S ’ l';lﬁé::

e :
o 8 P R0 B O B BN G U SN U NS R B e R S R R R B

R

T

E ot ¥
7 s
Sl - &
SOy :
RN ’ = s
G 7 - ="
5] Lol -
~~~~~ T L | i =
- -
= -
[ N S -
A e
;
% hat 3 \" — -
L5
Wy ——
A ~
it

( )

Image credit: https://en.wikipedia.org/
wiki/Pentium_(original)
g v,

CS181CA-PO: Computer Architecture 2 Fall 2025, Introducing Transient Execution



Outline

o Strategies to work around control hazards
e Pipelining with predicted PCs

* |Introducing the branch-target buffer

CS181CA-PO: Computer Architecture 3 Fall 2025, Introducing Transient Execution



4

Control Hazards Hardware

* |f it takes several cycles to know what the appropriate next program counter
value should be, then it may be the case that our processor executes
Instructions that are incorrect relative to the expected program behavior

* Executing instructions on the incorrect side of a branch is called a control
hazard as It will lead to incorrect instructions in the pipeline

* |f our processor implements a hazard checking unit, then the unit must also
check to see If incorrect instructions are in the pipeline due to control hazards
and appropriately stall/bubble the stages

CS181CA-PO: Computer Architecture 4 Fall 2025, Introducing Transient Execution



Strategies to Workaround Control Hazards

CS181CA-PO: Computer Architecture

Wldirl, O
1di rg, 1
1di r3, 4
w1dir4, 7
1di r5, 2

L bltrl, r3, 10
4 addrl, rl, r2
) mul r4, r4, r5
& jmp 6

end.

I

We don’t know the
answer!

~

We could wait or
guess!

Fall 2025, Introducing Transient Execution



What to Fetch Next

* Seeing as we will not know the true value of the PC until after the branch is evaluated
(which could be as late as after Execute), it may seem as though we have to delay our
next fetch until we know the PC

» Alternatively, we can try optimistically making an assumption or prediction about what
the next PC will be and correct ourselves later if we were wrong (we will talk about how
to do this next week)

* For example, we could assume that the instruction is always either not a branch or that
the branch Is not taken whenever we reach a control instruction

» Alternatively, we could track certain behaviors to try to predict whether the branch was
or was not taken kd we will come up with strategies to implement branch predictors on
Wednesday!

CS181CA-PO: Computer Architecture 6 Fall 2025, Introducing Transient Execution



Pipelining the Branching Data Path (attempt 4)

Fetch Decode Execute Memo iteback

Fetch Decode Execut Memory | Writeback

f } Fetch Decode Execute | Memory | Writeback
4 4 N ™) 4 ™)
Optimistically fetch next When the branch If LA correctly
instruction right away! target is incorrectly predict thg bra_mch Our processor needs to have a
. y computed, then we targejc _W|th high n_lechanlsm to roll back state
need to rely on the probability, then we into the last known correct
hazard checking logic can avoid control version of the registers!
hazards!
. J Y, . J

CS181CA-PO: Computer Architecture 7 Fall 2025, Introducing Transient Execution



Chat with your neighbor(s)!

Our goal is to optimistically fetch the next instruction
from instruction memory without knowing the next PC.
Speculate as to how you may extend the processor
data path to account for this unknown next value.

CS181CA-PO: Computer Architecture 8 Fall 2025, Introducing Transient Execution



Branch-Target Buffers ™

MUX

Adder

« Ultimately, our goal is to minimize the branch delay
between instructions. If the next PC is correct or the target

IS known, then our delay Is zero kd use dynamic prediction!

* We can do this by maintaining a table of recently used PCs
to track what our guesses for the next PC values should be

* This can be referred to as a “branch prediction cache” or a PC
branch-target buffer (BTB) and allows the processor to
have a new PC value before the instruction is decoded

Instruction Memory

* |f no such BTB entry for the current PC exists, then use the
current PC as the next value to fetch from the

PCO Pred Target O
PC 1 Pred Target 1

PC 2 Pred Target 2

CS181CA-PO: Computer Architecture 9 Fall 2025, Introducing Transient Execution



Data Path Pipeline with BTB

Branch correctly

Send predicted PC € Tak Yes predicted, normal
to instruction —» sl iInstruction execution
branch?
Yes memory N | Mispredicted branch,
- use hazard checkin
Send PC to —>| Entry found? unit logic ’
memory and BTB
8 Enter current PC
No Send current PC 4 : : ves and next PC into
] : Is the instruction a BTB
to instruction P>
taken branch?
memory g
No Normal instruction
execution

CS181CA-PO: Computer Architecture 10 Fall 2025, Introducing Transient Execution



Chat with your neighbor(s)!

Our BTB is essentially a cache for branch
Instruction targets. Do all hits to the B1B
provide the same benefit? Why or why not?

Fall 2025, Introducing Transient Execution



Branch Target Buffers and Instruction Memory

* Recall, instruction memory does not necessarily fetch instructions in a well-
defined amount of time

. If the processor issues a fetch for an instruction at OxffOO then O0xff40, the
memory system may respond with Oxff40 first if it was an instruction cache hit

 We could start executing Oxff40 before OxffOO and later correcting ourselves if

a dependence existed between these instructions k4 this processor “pre-
processing” Is called runahead

* |Implementing runahead uses same mechanism as a control hazard! We are
“executing the unknown”

CS181CA-PO: Computer Architecture 12

Fall 2025, Introducing Transient Execution



Takeaways

* The processor can add components to its data path that are not explicitly
related to an individual instruction in the instruction set

 The BTB serves as an auxiliary component that helps predict the next PC for
any branch

 We can leverage “execution of the unknown” to speculatively reduce the
amount of time spent waiting for sequential program order

CS181CA-PO: Computer Architecture 13 Fall 2025, Introducing Transient Execution



