
CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Introducing “Transient
Execution”

1

Homework 3 released (due
Nov 21)!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution2

Image credit: https://en.wikipedia.org/
wiki/Pentium_(original)

Two parallel pipelines
to handle multiple
instructions at the

same time!

Intel Pentium (P5)
from 1989

First processor chip
with dynamic branch

prediction

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Outline

• Strategies to work around control hazards

• Pipelining with predicted PCs

• Introducing the branch-target buffer

3

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution4

Control Hazards

• If it takes several cycles to know what the appropriate next program counter
value should be, then it may be the case that our processor executes
instructions that are incorrect relative to the expected program behavior

• Executing instructions on the incorrect side of a branch is called a control
hazard as it will lead to incorrect instructions in the pipeline

• If our processor implements a hazard checking unit, then the unit must also
check to see if incorrect instructions are in the pipeline due to control hazards
and appropriately stall/bubble the stages

Hardware

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution5

Strategies to Workaround Control Hazards

1⃣ ldi r1, 0
2⃣ ldi r2, 1
3⃣ ldi r3, 4
4⃣ ldi r4, 7
5⃣ ldi r5, 2
6⃣ blt r1, r3, 10
7⃣ add r1, r1, r2
8⃣ mul r4, r4, r5
9⃣ jmp 6
🔟 end

We don’t know the
answer!

We could wait or
guess!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution6

What to Fetch Next

• Seeing as we will not know the true value of the PC until after the branch is evaluated
(which could be as late as after Execute), it may seem as though we have to delay our
next fetch until we know the PC

• Alternatively, we can try optimistically making an assumption or prediction about what
the next PC will be and correct ourselves later if we were wrong (we will talk about how
to do this next week)

• For example, we could assume that the instruction is always either not a branch or that
the branch is not taken whenever we reach a control instruction

• Alternatively, we could track certain behaviors to try to predict whether the branch was
or was not taken ➡ we will come up with strategies to implement branch predictors on
Wednesday!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution7

Pipelining the Branching Data Path (attempt 4)

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Fetch Decode Execute Memory Writeback

Optimistically fetch next
instruction right away!

When the branch
target is incorrectly
computed, then we
need to rely on the

hazard checking logic

If we can correctly
predict the branch

target with high
probability, then we
can avoid control

hazards!

Our processor needs to have a
mechanism to roll back state
into the last known correct

version of the registers!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Our goal is to optimistically fetch the next instruction
from instruction memory without knowing the next PC.

Speculate as to how you may extend the processor
data path to account for this unknown next value.

8

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Branch-Target Buffers

9

PC

In
st

ru
ct

io
n

M
em

or
y

Adder
4

MUX …
…

• Ultimately, our goal is to minimize the branch delay
between instructions. If the next PC is correct or the target
is known, then our delay is zero ➡ use dynamic prediction!

• We can do this by maintaining a table of recently used PCs
to track what our guesses for the next PC values should be

• This can be referred to as a “branch prediction cache” or a
branch-target buffer (BTB) and allows the processor to
have a new PC value before the instruction is decoded

• If no such BTB entry for the current PC exists, then use the
current PC as the next value to fetch from the

PC 0 Pred Target 0

PC 1 Pred Target 1

PC 2 Pred Target 2

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Data Path Pipeline with BTB

10

Send PC to
memory and BTB Entry found?

Send predicted PC
to instruction

memory

Is the instruction a
taken branch?

Taken
branch?

Yes

No Send current PC
to instruction

memory
Normal instruction

execution

Enter current PC
and next PC into

BTB

No

Yes

Branch correctly
predicted, normal

instruction execution

Mispredicted branch,
use hazard checking

unit logic

No

Yes

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Our BTB is essentially a cache for branch
instruction targets. Do all hits to the BTB

provide the same benefit? Why or why not?

11

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Branch Target Buffers and Instruction Memory

• Recall, instruction memory does not necessarily fetch instructions in a well-
defined amount of time

• ➡ if the processor issues a fetch for an instruction at 0xff00 then 0xff40, the
memory system may respond with 0xff40 first if it was an instruction cache hit

• We could start executing 0xff40 before 0xff00 and later correcting ourselves if
a dependence existed between these instructions ➡ this processor “pre-
processing” is called runahead

• Implementing runahead uses same mechanism as a control hazard! We are
“executing the unknown”

12

CS181CA-PO: Computer Architecture Fall 2025, Introducing Transient Execution

Takeaways

• The processor can add components to its data path that are not explicitly
related to an individual instruction in the instruction set

• The BTB serves as an auxiliary component that helps predict the next PC for
any branch

• We can leverage “execution of the unknown” to speculatively reduce the
amount of time spent waiting for sequential program order

13

