
CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Basic Control Instructions

1

HW1 (written) grades 
published, HW2 due 
Wednesday night!



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Outline

• Control instructions as software


• Adding control instructions to the data path


• Identifying and handling control hazards

2



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Types of Branches

int x = 7; 
for (int i = 0; i < 4; i++) { 

x *= 2; 
}

int x = 10; 
if (x % 3 == 1) { 

return true; 
} else { 

return false; 
}

int x = 3; 
do { 

x += 3; 
} while (x < 30);

Perform each 
step of the loop 
assuming that 

the condition is 
true

Jump back up 
to the beginning 

of the loop 
declaration!

Depending on 
the condition, 

perform one side 
of the branch

1⃣ Jump to else 
if false 

2⃣ Jump past else 
“if-block” if true 
3⃣ Return

Perform each 
step of the loop 
assuming that 

the condition is 
true

Jump back up 
to the beginning 

of the loop 
declaration!

Software

3



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Types of Branches

• In general, if we want to manipulate where a program goes, our compiler will 
translate high-level code into branch instructions where the execution may be 
directed to some instruction that isn’t the next to execute


• Unconditional branches imply that the next instruction to execute will always 
be at a well-defined next location


• Conditional branches describe instructions for which the control flow of the 
execution will depend on some data

Software

4



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

If we want to implement a branching instruction 
in assembly, what are the necessary fields to 

embed in the raw bytes for its execution?

Chat with your neighbor(s)!

Opcode to specify 
that we are 

implementing a 
branch

Destination address 
for the branch target

Register locations 
for input sources

Software

5



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Case Study: Branching in RISC-V Software

Conditional Jumps

Unconditional 
Jumps

1⃣ bne r1, r2, 0xff00 
2⃣ blt r1, r2, 0xff00 

“if-statements” and loops

1⃣ jmp 0xff00 
2⃣ jalr 

function calls and returns 

6



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Chat with your neighbor(s)!

int x = 7; 
for (int i = 0; i < 4; i++) { 

x *= 2; 
}

int x = 10; 
if (x % 3 == 1) { 

return true; 
} else { 

return false; 
}

int x = 3; 
do { 

x += 3; 
} while (x < 30);

bne, blt, jmp, jalr

1⃣ ldi r1, 0 
2⃣ ldi r2, 1 
3⃣ ldi r3, 4 
4⃣ ldi r4, 7 
5⃣ ldi r5, 2 
6⃣ blt r1, r3, 10 
7⃣ add r1, r1, r2 
8⃣ mul r4, r4, r5 
9⃣ jmp 6 
🔟 end

1⃣ ldi r1, 3 
2⃣ ldi r2, 30 
3⃣ ldi r3, 3 
4⃣ add r3, r1, r3 
5⃣ blt r3, r2, 4 
6⃣ end

1⃣ ldi r1, 10 
2⃣ ldi r2, 3 
3⃣ ldi r3, 1 
4⃣ mod r5, r1, r2 
5⃣ bne r5, r3, 8 
6⃣ ldi <return reg> 1 
7⃣ jalr 
8⃣ ldi <return reg> 0 
9⃣ jalr

Software

7



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Extending PC Update Logic Hardware

PC

In
st

ru
ct

io
n 

M
em

or
y

Adder
4

Register 
File

ALU

MUX

MUX

Data 
Memory

D
ec

od
er

 U
ni

t

MUX

Currently, the PC is always 
incremented by four as a default 

behavior ➡ this will not account for all 
instructions in the ISA

8



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Updating the Data Path for Control Hardware

PC

In
st

ru
ct

io
n 

M
em

or
y

Adder
4

Register 
File

ALU

MUX

MUX

Data 
Memory

D
ec

od
er

 U
ni

t

MUX

MUX

The branch target is 
embedded in the instruction 
➡ extract it and make a 

decision of which value to use

What happens if we encode 
the branch target as an offset 

from the current PC?

9



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Computing Branch Targets

• In most real instruction sets, branch targets are embedded as an offset from 
the current program counter


• This enables the program to jump further into the program space than 
embedding the raw instruction into the binary ➡ also allows for dynamic 
address layout randomization by the operating system


• If this is the case, then we need to include additional components in the data 
path to perform this computation!

10



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Suppose we are pipelining our data path to include 
branch instructions. In what stage does it make sense 

to satisfy the MUX where the PC gets updated? 

Chat with your neighbor(s)!

If we want to update the PC, then we 
need to make sure that the condition 

has been evaluated ➡ this means that 
we will need to perform a computation 

and interpret the output!

11



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Control Hazards

• If it takes several cycles to know what the appropriate next program counter 
value should be, then it may be the case that our processor executes 
instructions that are incorrect relative to the expected program behavior


• Executing instructions on the incorrect side of a branch is called a control 
hazard as it will lead to incorrect instructions in the pipeline


• If our processor implements a hazard checking unit, then the unit must also 
check to see if incorrect instructions are in the pipeline due to control hazards 
and appropriately stall/bubble the stages

12



CS181CA-PO: Computer Architecture Fall 2025, Basic Control Instructions

Takeaways

• By adding control instructions, our programs can become more robust but 
they also add complexity to the underlying hardware


• Updating the control flow requires new hardware logic to update the PC and 
pipelining logic must change accordingly


• By updating the pipeline, we introduce control hazards that must be mitigated 

13


