Basic Control Instructions

<

HW1 (written) grades
published, HW2 due
Wednesday night!

_J

CS181CA-PO: Computer Architecture

Fall 2025, Basic Control Instructions

Outline

* Control instructions as software
* Adding control instructions to the data path

* |dentifying and handling control hazards

CS181CA-PO: Computer Architecture 2 Fall 2025, Basic Control Instructions

Types of Branches

intx="17; int x = 3;
for (inti=0;i<4;i++) { do {

X *=2; X += 3;
] } while (x < 30);

Perform each
step of the loop

Perform each

step of the loop Jump back up

to the beginning
of the loop
declaration!

Jump back up
to the beginning
of the loop
declaration!

assuming that
the condition is
true

assuming that
the condition is
true

CS181CA-PQO: Computer Architecture 3

4

Software

int x = 10;
If(X%3==1) {
return true;
} else {
return false;

}

T Jump to else
If false
2 Jump past else
“if-block” If true
3 Return

Depending on
the condition,
perform one side
of the branch

Fall 2025, Basic Control Instructions

4

Types of Branches Software

* |n general, if we want to manipulate where a program goes, our compiler will
translate high-level code into branch instructions where the execution may be
directed to some instruction that isn’t the next to execute

* Unconditional branches imply that the next instruction to execute will always
be at a well-defined next location

» Conditional branches describe instructions for which the control flow of the
execution will depend on some data

CS181CA-PO: Computer Architecture 4 Fall 2025, Basic Control Instructions

4

Chat with your neigthr(S)! Software

If we want to implement a branching instruction
In assembly, what are the necessary fields to
embed in the raw bytes for its execution?

Opcode to specify

that we are
Implementing a
branch

Destination address Register locations

for the branch target for input sources

CS181CA-PO: Computer Architecture 5 Fall 2025, Basic Control Instructions

4

Case Study: Branching in RISC-V Software

31 25 24 20 19 15 14 12 11 7 6 0
Conditional Jumps funct7 rs2 rsl funct3 rd opcode R-type
imm|11:0] rsl funct3 rd opcode I-type
imm|11:5] rs2 rsl funct3 imm|[4:0] opcode S-type
imm|12(10:5 rs2 funct3 | imm|4:1|11 B-type

imm|31:12 rd U-type

Unconditional imm|20[10:1]11]10:12 rd J-type

Jumps

.. bnerl, r2, OxffO0 . jmp 0xffO0

2 blt rl, r2, OXffOO . jalr
“If-statements” and loops function calls and returns

CS181CA-PO: Computer Architecture 6 Fall 2025, Basic Control Instructions

4

bne, blt, jmp, jalr
Software

Chat with your neighbor(s)!

int x = 10;
if(xX%3==1) {
return true;

intx="17;
for (inti=0;1i<4;i++) {

int X = &;
do {

)

X *=2;

Wildirl, O

1di rg, 1

1di r3, 4

1di r4, 7
J1dirs, 2
bltrl, r3, 10
W addrl, rl, r2
mul r4, r4, r5
& jmp 6

end

CS181CA-PQO: Computer Architecture

X += &;

} while (x < 30);

L 1ldirl, 3

1di r2, 30

1di r3, 3

add r3, rl, r3
. bltr3, re, 4
end

} else {

}

return false;

7T 1dirl, 10

2 1dir2, 3

8 1dir3, 1

4 mod r5, rl, r2
5 bners, r3, 8

6 1di <return reg> 1

7 jalr

8 1di <return reg> 0

9 jalr

Fall 2025, Basic Control Instructions

4

EXtending PC Update Logic Hardware

Adder

/

Currently, the PC is always

incremented by four as a default
behavior [this will not account for all

instructions in the ISA X [

Y

ALU Data
Memory

]

-
O
S
)
=
c
O
jd
O
-
-
jd
7))
=

@oder Unit

MUX

CS181CA-PO: Computer Architecture 8 Fall 2025, Basic Control Instructions

(

4

Updatlng the Data Path for Control Hardware

The branch target is -

embedded in the instruction What happens if we encode

extract it and make a the branch target as an offset

MUX . . : from the current PC?
\demsmn of which value to use

J

Adder

/ f

Y

Register TN
File

ALU Data
Memory

MUX [=»

N/

]

-
O
S
)
=
c
O
jd
O
-
-
jd
7))
=

@oder Unit

MUX

CS181CA-PO: Computer Architecture 9 Fall 2025, Basic Control Instructions

(

Computing Branch Targets

* |n most real instruction sets, branch targets are embedded as an offset from
the current program counter

* This enables the program to jump further into the program space than
embedding the raw instruction into the binary 4 also allows for dynamic
address layout randomization by the operating system

* |f this is the case, then we need to include additional components in the data
path to perform this computation!

CS181CA-PO: Computer Architecture 10 Fall 2025, Basic Control Instructions

Chat with your neighbor(s)!

Suppose we are pipelining our data path to include
branch instructions. In what stage does it make sense
to satisfy the MUX where the PC gets updated?

If we want to update the PC, then we
need to make sure that the condition

has been evaluated || this means that

we will need to perform a computation
and interpret the output!

CS181CA-PO: Computer Architecture 11 Fall 2025, Basic Control Instructions

Control Hazards

* |f it takes several cycles to know what the appropriate next program counter
value should be, then it may be the case that our processor executes
Instructions that are incorrect relative to the expected program behavior

* Executing instructions on the incorrect side of a branch is called a control
hazard as It will lead to incorrect instructions in the pipeline

* |f our processor implements a hazard checking unit, then the unit must also
check to see If incorrect instructions are in the pipeline due to control hazards
and appropriately stall/bubble the stages

CS181CA-PO: Computer Architecture 12 Fall 2025, Basic Control Instructions

Takeaways

By adding control instructions, our programs can become more robust but
they also add complexity to the underlying hardware

» Updating the control flow requires new hardware logic to update the PC and
pipelining logic must change accordingly

By updating the pipeline, we introduce control hazards that must be mitigated

CS181CA-PO: Computer Architecture 13 Fall 2025, Basic Control Instructions

