
CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Cache Attacks, continued!

1

Lab tonight! Building the basis of a cache attack; 
Potential additional colloquium opportunity, 

Tuesday, October 28 at Mudd ➡ “(Re)computing 
Electronic Waste”



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)2



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Outline

• Revisiting the attack setup


• Introducing timing side channel attack methodologies


• Building protected caches

3



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Shared Memory Model

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

1⃣ Click key 
2⃣ Start rendering 
3⃣ End rendering

🥅 : Measure timing of 
rendering (e.g., end - 

start)

lib
ca

ir
o.

so

renderStart(); renderEnd();

Victim Adversary

4



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Measuring Shared Cache Behavior

• We want to be able to say when certain behaviors have occurred in the victim 
process based on events that we can observe in shared hardware


• If we want to know that a victim has called a function, then we would expect 
that address of that function will be in the shared caches (as it has been 
loaded into the L1 instruction cache the victim processor)


• To find this value, the adversary should also try accessing this address to see 
if it exists in the shared cache

5



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Describe a case where the victim calls renderStart 
and the data is not observable by the adversary. What 
leads to this case? Are there other cache features that 

the adversary can use to achieve the same end?

Chat with your neighbor(s)!

The adversary needs to be 
able to control what is in the 

victim’s cache state to be able 
to infer what they accessed!

6



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Flush + Reload Attack

CPU CPU

shared cache

🕵💁 // flush the line 
clflush 0xRENDERSTART; 

// wait some time 
t1 = time.now(); 
while (time.now() - t1 < 100ns) {}; 

// access line 
t2 = time.now() 
x = *(0xRENDERSTART); 
access_time = time.now() - t2; 

// if slow access, unused 
// else, used!

7



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Flush + Reload Attack

• For some sensitive data, evict it from the cache state ➡ this means that any 
subsequent hit on that data was a due to the victim’s behavior


• To implement such an attack, an adversary needs to be able to use very 
precise timers (nanosecond granularity) and be able to execute completely in 
parallel with the victim


• x86 gives access to the clflush instruction to be able to explicitly interact with 
long term storage and write certain data through to non-volatile storage


• Potential mitigation: What happens if the ISA and/or hardware doesn’t allow 
for explicit flushing instructions or this granularity of timing?

8



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Prime + Probe Attack

• Unfortunately, we are not safe with these ISA defenses!


• While, we may not be able to time individual accesses, but we can measure 
the impact of misses due to cache contention

CPU CPU

shared cache

🕵💁

9



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Prime + Probe Attack

• Performing a prime + probe achieves the same 
end of evicting the data, but does not require any 
special instructions!


• An adversary can control what is in the cache state 
by filling it with data that occupies all available 
blocks ➡ how might they be able to achieve this? 
(You will do this in lab tonight!)


• The granularity of timing becomes significantly less 
precise ➡ priming the cache is slow by definition!

🕵 // flush the line 
clflush 0xRENDERSTART; 

// wait some time 
t1 = time.now(); 
while (time.now() - t1 < 100ns) {}; 

// access line 
t2 = time.now() 
x = *(0xRENDERSTART); 
access_time = time.now() - t2; 

// if slow access, unused 
// else, used!

10



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Cache Timing Side Channel Takeaways

• Data shared by multiple applications (e.g., shared library functions) are visible 
throughout the cache hierarchy and memory system by all sharing processes


• To achieve the intended illusion of a “large, fast memory”, the cache hierarchy 
is constructed to allow for recently accessed data to be accessed at a lower 
latency!


• If there are observable behaviors (even if unintentional) in the memory system 
that leak information, this can be exploited to infer sensitive behaviors being 
performed in the victim application

11



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Image credit: https://www.ndss-
symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/

So, how effective was the attack?

12



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Having observed the features that go into developing 
this attack, think about how you would go about 

building a defense. What would be the features that 
you would target first?

Chat with your neighbor(s)!

13



CS181CA-PO: Computer Architecture Fall 2025, Cache Attacks (part 2)

Defending Against Shared Cache Attacks

• Keeping instructions private: if the renderStart and renderEnd instructions are at private 
addresses rather than shared addresses, then the adversary will not necessarily know which 
addresses to look for


• Keeping cache state private (or partitioned): if caches have certain regions delegated to 
certain processes/processors, then the behavior of the victim and adversary are not 
intertwined


• Mitigating accesses with noisy/random accesses: if the cache makes some accesses that do 
not correspond to application behavior, then an adversary would not be able to infer whether 
a hit corresponds to the victim actually calling renderStart


• Hiding application leakage: if the timing to render different characters is consistent for all 
characters, then the differences between start and end time should not leak the keystroke 
information!

14


