Cache Attacks, continued!

( )

Lab tonight! Building the basis of a cache attack;
Potential additional colloquium opportunity,
Tuesday, October 28 at Mudd .. “(Re)computing

Electronic Waste”

_ _J
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ABSTRACT

President Biden’s National Cybersecurity Strategy outlines two fundamental shifts:
the need to both rebalance the responsibility to defend cyberspace and realign
incentives to favor long-term cybersecurity investments. In this report, the case is
made that the technical community is well-positioned to drive progress on both
strategic goals. First, in order to reduce memory safety vulnerabilities at scale,
creators of software and(hardware)can better secure the building blocks of
cyberspace. This report focuses on the programming language as a primary building
block, and explores hardware architecture and formal methods as complementary
approaches to achieve similar outcomes. Second, in order to establish accurate
cybersecurity quality metrics, advances can be made to address the hard and
complex research problem of software measurability. This report explores how
such metrics can shift market forces to improve cybersecurity quality across the
ecosystem.
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Outline

* Revisiting the attack setup
* |ntroducing timing side channel attack methodologies

* Building protected caches
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Measuring Shared Cache Behavior

 \WWe want to be able to say when certain behaviors have occurred in the victim
process based on events that we can observe in shared hardware

e |f we want to know that a victim has called a function, then we would expect
that address of that function will be in the shared caches (as it has been
loaded into the L1 instruction cache the victim processor)

* Jo find this value, the adversary should also try accessing this address to see
If it exists in the shared cache

CS181CA-PQO: Computer Architecture 5 Fall 2025, Cache Attacks (part 2)



Chat with your neighbor(s)!

Describe a case where the victim calls renderStart
and the data Is not observable by the adversary. What
leads to this case? Are there other cache features that

the adversary can use to achieve the same end?

The adversary needs to be
able to control what is in the

victim’s cache state to be able
to infer what they accessed!
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Flush + Reload Attack

N
(o o)

N=F -

// flush the line
clflush OXRENDERSTART,

// wait some time
t1l = time.now();
while (time.now() -t1 < 100ns) {};

// access line
t& = time.now()

X = *(OXxXRENDERSTART);

// if slow access, unused
// else, used!
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Flush + Reload Attack

 For some sensitive data, evict it from the cache state w4 this means that any
subsequent hit on that data was a due to the victim’s behavior

* o Implement such an attack, an adversary needs to be able to use very
precise timers (nanosecond granularity) and be able to execute completely in
parallel with the victim

e X86 gives access to the clflush instruction to be able to explicitly interact with
long term storage and write certain data through to non-volatile storage

* Potential mitigation: What happens if the ISA and/or hardware doesn’t allow
for explicit flushing instructions or this granularity of timing??
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Prime + Probe Attack

» Unfortunately, we are not safe with these ISA defenses!

 While, we may not be able to time individual accesses, but we can measure
the impact of misses due to cache contention

‘shared cache \
CS181CA-PQO: Computer Archite ' : —9 Fall 2025, Cache Attacks (part 2)




Prime + Probe Attack

o Performing a prime + probe achieves the same &

\3@ // flush the _line |
end of evicting the data, but does not require any <% clilush OXRENDERSTART,
special instructions! 1/ wait some time
tl =time.now();
 An adversary can control what is in the cache state while (time.now() - t1 < 100ns) {};

by filling it with data that occupies all available 1/ access line
blocks wd how might they be able to achieve this? t2 =t(igneﬁno§v]§_> RSTART)

: . : X = *(OxRENDE :
(You will do this in lab tonight!) acCess. time = time.now() - t2.

* The granularity of timing becomes significantly less Z i slow access, unused
precise &d priming the cache is slow by definition! , used:
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Cache Timing Side Channel Takeaways

 Data shared by multiple applications (e.g., shared library functions) are visible
throughout the cache hierarchy and memory system by all sharing processes

* Jo achieve the intended illusion of a “large, fast memory”, the cache hierarchy

IS constructed to allow for recently accessed data to be accessed at a lower
latency!

* |f there are observable behaviors (even if unintentional) in the memory system
that leak information, this can be exploited to infer sensitive behaviors being
performed In the victim application
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So, how effective was the attack?

TABLE III: Example dictionary-assisted password guessing attack for

password ‘“hello”.

Input Confidence Vectqr (Partlal.)
e h 1 ] 1 0 S y

h 0.0 0.39 | 0.0 023 | 0.0 0.0 0.0 0.03

e 0.21 0.0 0.0 0.0 0.0 0.0 0.0 0.03

| 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.0

| 0.0 0.0 0.05 | 0.0 037 | 0.0 0.07 | 0.06

0 0.0 0.0 0.0 0.0 0.0 0.15 | 0.0 0.0
Rank | Dictionary Words | Confidence Value
1 hello 0.3940.21 4+ 0.37 4+ 0.37 4+ 0.15 = 1.49
2 jelly 0.23 4+ 0.21 4+0.374+0.374+0.0=1.18
3 hills 0.394+0.04+0.3740.374+0.0=1.13
4 holly 0.394+0.04+0.3740.374+0.0=1.13
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Image credit: https://www.ndss-

symposium.org/ndss-paper/unveiling-
your-keystrokes-a-cache-based-side-
channel-attack-on-graphics-libraries/
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Chat with your neighbor(s)!

Having observed the features that go into developing
this attack, think about how you would go about
building a defense. What would be the features that
you would target first?

CS181CA-PQO: Computer Architecture 13 Fall 2025, Cache Attacks (part 2)



Defending Against Shared Cache Attacks

* Keeping instructions private: if the renderStart and renderEnd instructions are at private

addresses rather than shared addresses, then the adversary will not necessarily know which
addresses to look for

» Keeping cache state private (or partitioned): if caches have certain regions delegated to
certain processes/processors, then the behavior of the victim and adversary are not
intertwined

* Mitigating accesses with noisy/random accesses: if the cache makes some accesses that do
not correspond to application behavior, then an adversary would not be able to infer whether
a hit corresponds to the victim actually calling renderStart

* Hiding application leakage: if the timing to render different characters is consistent for all
characters, then the differences between start and end time should not leak the keystroke
information!
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