Shared Caches and Coherence

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

A New Approach for the Verification of
Cache Coherence Protocols

Fong Pong, Member, IEEE, and Michel Dubois, Senior Member, IEEE Computer Society

R(1 ’ w())a ch(])

-
' WG), Repti)

5 f; A RG)

: . cition di e of
S;ﬁi‘;.(':l;he Ilinois protocol transition diagram from the perspectiv - ES—— ~

ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=406955

R(j), Rep())

- W,

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Outline

* Revisiting the “shared cache” setup
* Consistency issues in a shared memory system

* |Implementing cache coherence!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

From Friday... Snhooping to Accelerate Lookups

 Caches are connected to one another using collections of wires between ports (i.e.,

buses
) L2 Cache L2 Cache

I Bus to L3

L3 Cache

 Buses between caches can support different kinds of memory commands: caches
can query the lower-level memory component directly via a request or to other peers
on the processor-side of the bus via a broadcast

 Broadcasts can be used to implement optimistic snooping requests in which a cache
asks a peer if they have a shared data value to avoid the longer latency lookup of the
lower levels

CS181CA-PO: Computer Architecture 4 Fall 2025, Shared Caches and Coherence

The consistency issue...

def withdraw(n):
assert(acct.palance >=n)

def deposit(n):
acct.balance +=n

acct.balance -=n
What is the expected

h Call == deposit($100) | |
outcome?
— Call —=| withdraw($30) [__\

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

CPU

L2 Cache

CS181CA-PQO: Computer Architecture

Add acct balance

The consistency issue...

Read acct balance

Read acct balance

Subtract acct balance

Main Memory

CPU

U

Culprit: parallel updates to

o

private copies of shared
datal

J

Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses (attempt 1)

Read acct balance Read acct balance

Add acct balance Subtract acct balance

/ Chat with your neighbor(s)! \

@ _ What is the culprit here? How can our
Main Memory caching policies be adjusted to achieve
Ksynchronized sequential accesses?j

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Solution 1: Sequential Accesses

e On each cache block, we will add a small number of coherence bits to track

which processor currently “owns” access to the block!

 When accessing the block, first “acquire” the cache line by setting the
coherence bits in the shared cache

* Jo release the lock on that cache line, update its state using a write-through

update strategy!

CS181CA-PO: Computer Architecture

-

Are we done??

~

Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses (attempt 2)

Withdraw $80!

L2 Cache

‘Lz Cache
: Main Memory

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses

e On each cache block, we will add a small number of coherence bits to track
which processor currently “owns” access to the block!

 When accessing the block, first “acquire” the cache line by setting the
coherence bits in the shared cache

* Jo release the lock on that cache line, update its state using a write-through
update strategy!

 We also need to invalidate or update any other private copies of the data
elsewhere in the memory system &4 requires updating the data or valid bit

associated with the cache block!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Benefits and Pitfalls of Sequential Accesses

fCqurit: parallel updates to\
private copies of shared

K datal j

 Sequential accesses to shared data in the memory system provides a
consistent view of data in all caches

* Requires updating the cache block structure to track which processor “owns”
the block, spinning and waiting is bad! X

» (&4 can be reduced to a single blocked bit so long as the operation is a
swap... the current modifying processor is not relevant to consistency
protocol

* Requires write-through update protocol to ensure that initial reads of shared
data acquire the right value! This and invalidates means lots of traffic... X

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Reading Shared Values

Read acct balance Read acct balance

Unmodified, so no consistency
iIssue!

L2 Cache L3 Cache — 2 Cache

Main Memory

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

« MSI coherence: at most one processor
can own a cache block in modified state

 Jo update a block, first send an

Invalidate to other caches in the memory

system for this address

* Once the invalidate has responded, the
updating cache can safely set the cache
block state from shared to modified

CS181CA-PQO: Computer Architecture

Implementing Simple Cache Coherence

Update private copy of
data

Modified

Remote copy
updated

Fetch data
Fetch data from
. from memory
memory for write
for read

Start

Fall 2025, Shared Caches and Coherence

MSI Coherence

Read acct balance

Read acct balance

Subtract acct balance

CPU

Gl Invalidate

Add acct balance

. o]

(o
Invalidate

In practice, our bus between
private L2 caches and L3 needs to

Destructive interference of Main Memory

act as a serialization point to
resolve the “race condition”

iInvalidate requests!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

MOESI Coherence (Used in AMDG64!)

* Two notable disadvantages of MSI are:

o [every update requires notifying the rest of the memory hierarchy by
sending an invalidate request... this is a lot of traffic!

» & there is no conception of holding a cache line exclusively

 The MOESI coherence protocol extends MSI to also include an owned state and
an exclusive state

 More context about what else is happening in the cache hierarchy means that
more operations can safely be performed on caches across the memory system

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

