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Outline

• Revisiting the “shared cache” setup


• Consistency issues in a shared memory system


• Implementing cache coherence!
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From Friday… Snooping to Accelerate Lookups

• Caches are connected to one another using collections of wires between ports (i.e., 
buses)


• Buses between caches can support different kinds of memory commands: caches 
can query the lower-level memory component directly via a request or to other peers 
on the processor-side of the bus via a broadcast


• Broadcasts can be used to implement optimistic snooping requests in which a cache 
asks a peer if they have a shared data value to avoid the longer latency lookup of the 
lower levels 

L3 Cache

L2 CacheL2 Cache

Bus to L3

4



CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

The consistency issue…

def deposit(n): 
    acct.balance += n

def withdraw(n): 
    assert(acct.balance >= n) 
    acct.balance -= n

deposit($100)

withdraw($30)

Proc 0

Proc 1

What is the expected 
outcome?

Call

Call

💰
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The consistency issue…
CPU

L1 Cache
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L2 Cache

Main Memory

Read acct balance 

Add acct balance

0
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0

Read acct balance 

Subtract acct balance

0

100 0-30

Culprit: parallel updates to 
private copies of shared 

data!
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Potential Solution: Sequential Accesses (attempt 1)

CPU

L1 Cache
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Read acct balance 

Add acct balance
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0

100 0-30

😴

Chat with your neighbor(s)! 

What is the culprit here? How  can our 
caching policies be adjusted to achieve 

synchronized sequential accesses?
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Solution 1: Sequential Accesses

• On each cache block, we will add a small number of coherence bits to track 
which processor currently “owns” access to the block!


• When accessing the block, first “acquire” the cache line by setting the 
coherence bits in the shared cache


• To release the lock on that cache line, update its state using a write-through 
update strategy!

Are we done??
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Potential Solution: Sequential Accesses (attempt 2)

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Withdraw $80!

0

70100

0

70

100 07020

20 20



CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses

• On each cache block, we will add a small number of coherence bits to track 
which processor currently “owns” access to the block!


• When accessing the block, first “acquire” the cache line by setting the 
coherence bits in the shared cache


• To release the lock on that cache line, update its state using a write-through 
update strategy!


• We also need to invalidate or update any other private copies of the data 
elsewhere in the memory system ➡ requires updating the data or valid bit 
associated with the cache block!
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Benefits and Pitfalls of Sequential Accesses

• Sequential accesses to shared data in the memory system provides a 
consistent view of data in all caches ✅


• Requires updating the cache block structure to track which processor “owns” 
the block, spinning and waiting is bad! ❌


• ➡ can be reduced to a single blocked bit so long as the operation is a 
swap… the current modifying processor is not relevant to consistency 
protocol


• Requires write-through update protocol to ensure that initial reads of shared 
data acquire the right value! This and invalidates means lots of traffic… ❌

Culprit: parallel updates to 
private copies of shared 

data!
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Reading Shared Values
CPU
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Read acct balance
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Read acct balance

0

0

Unmodified, so no consistency 
issue!
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Implementing Simple Cache Coherence

Modified Shared

Invalid

Fetch data 
from memory 

for read

Fetch data from 
memory for write

Update private copy of 
data

Remote copy 
updated

Start

• MSI coherence: at most one processor 
can own a cache block in modified state


• To update a block, first send an 
invalidate to other caches in the memory 
system for this address


• Once the invalidate has responded, the 
updating cache can safely set the cache 
block state from shared to modified
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MSI Coherence
CPU
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Read acct balance 

Add acct balance
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Subtract acct balance
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Invalidate

Invalidate I

IInvalidate

Invalidate

Invalidate

Invalidate

I

I

Destructive interference of 
invalidate requests!

In practice, our bus between 
private L2 caches and L3 needs to 

act as a serialization point to 
resolve the “race condition”
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MOESI Coherence (Used in AMD64!)

• Two notable disadvantages of MSI are:


• 1⃣ every update requires notifying the rest of the memory hierarchy by 
sending an invalidate request… this is a lot of traffic!


• 2⃣ there is no conception of holding a cache line exclusively


• The MOESI coherence protocol extends MSI to also include an owned state and 
an exclusive state


• More context about what else is happening in the cache hierarchy means that 
more operations can safely be performed on caches across the memory system


