
CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Shared Caches and Coherence

1

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Image Credit: https://
ieeexplore.ieee.org/stamp/

stamp.jsp?arnumber=406955

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Outline

• Revisiting the “shared cache” setup

• Consistency issues in a shared memory system

• Implementing cache coherence!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

From Friday… Snooping to Accelerate Lookups

• Caches are connected to one another using collections of wires between ports (i.e.,
buses)

• Buses between caches can support different kinds of memory commands: caches
can query the lower-level memory component directly via a request or to other peers
on the processor-side of the bus via a broadcast

• Broadcasts can be used to implement optimistic snooping requests in which a cache
asks a peer if they have a shared data value to avoid the longer latency lookup of the
lower levels

L3 Cache

L2 CacheL2 Cache

Bus to L3

4

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

The consistency issue…

def deposit(n):
 acct.balance += n

def withdraw(n):
 assert(acct.balance >= n)
 acct.balance -= n

deposit($100)

withdraw($30)

Proc 0

Proc 1

What is the expected
outcome?

Call

Call

💰

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

The consistency issue…
CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Read acct balance

Add acct balance

0

00

0

Read acct balance

Subtract acct balance

0

100 0-30

Culprit: parallel updates to
private copies of shared

data!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses (attempt 1)

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Read acct balance

Add acct balance

0

00

0

Read acct balance

Subtract acct balance

0

100 0-30

😴

Chat with your neighbor(s)!

What is the culprit here? How can our
caching policies be adjusted to achieve

synchronized sequential accesses?

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Solution 1: Sequential Accesses

• On each cache block, we will add a small number of coherence bits to track
which processor currently “owns” access to the block!

• When accessing the block, first “acquire” the cache line by setting the
coherence bits in the shared cache

• To release the lock on that cache line, update its state using a write-through
update strategy!

Are we done??

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses (attempt 2)

CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Withdraw $80!

0

70100

0

70

100 07020

20 20

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Potential Solution: Sequential Accesses

• On each cache block, we will add a small number of coherence bits to track
which processor currently “owns” access to the block!

• When accessing the block, first “acquire” the cache line by setting the
coherence bits in the shared cache

• To release the lock on that cache line, update its state using a write-through
update strategy!

• We also need to invalidate or update any other private copies of the data
elsewhere in the memory system ➡ requires updating the data or valid bit
associated with the cache block!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Benefits and Pitfalls of Sequential Accesses

• Sequential accesses to shared data in the memory system provides a
consistent view of data in all caches ✅

• Requires updating the cache block structure to track which processor “owns”
the block, spinning and waiting is bad! ❌

• ➡ can be reduced to a single blocked bit so long as the operation is a
swap… the current modifying processor is not relevant to consistency
protocol

• Requires write-through update protocol to ensure that initial reads of shared
data acquire the right value! This and invalidates means lots of traffic… ❌

Culprit: parallel updates to
private copies of shared

data!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Reading Shared Values
CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Read acct balance

0

00

0

Read acct balance

0

0

Unmodified, so no consistency
issue!

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

Implementing Simple Cache Coherence

Modified Shared

Invalid

Fetch data
from memory

for read

Fetch data from
memory for write

Update private copy of
data

Remote copy
updated

Start

• MSI coherence: at most one processor
can own a cache block in modified state

• To update a block, first send an
invalidate to other caches in the memory
system for this address

• Once the invalidate has responded, the
updating cache can safely set the cache
block state from shared to modified

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

MSI Coherence
CPU

L1 Cache

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

Read acct balance

Add acct balance

0

00

0

Read acct balance

Subtract acct balance

0

0

S

S

S

S

Invalidate

Invalidate I

IInvalidate

Invalidate

Invalidate

Invalidate

I

I

Destructive interference of
invalidate requests!

In practice, our bus between
private L2 caches and L3 needs to

act as a serialization point to
resolve the “race condition”

CS181CA-PO: Computer Architecture Fall 2025, Shared Caches and Coherence

MOESI Coherence (Used in AMD64!)

• Two notable disadvantages of MSI are:

• 1⃣ every update requires notifying the rest of the memory hierarchy by
sending an invalidate request… this is a lot of traffic!

• 2⃣ there is no conception of holding a cache line exclusively

• The MOESI coherence protocol extends MSI to also include an owned state and
an exclusive state

• More context about what else is happening in the cache hierarchy means that
more operations can safely be performed on caches across the memory system

