
CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Introducing the Memory
Hierarchy

1

HW1 due Friday;
HW2 released after class;

Check In 3 on Friday

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy2

Image credit: https://
en.wikipedia.org/wiki/
Titan_(1963_computer)

The “Atlas 2” from Titan was
one of the first processors with

a CPU Cache

The “cache” was itself main
memory — faster than the
magnetic tape decks and

rotating drum-stores!

One of the first “time-sharing”
processors ➡ an early
predecessor to cloud

compute!

https://en.wikipedia.org/wiki/Titan_(1963_computer)
https://en.wikipedia.org/wiki/Titan_(1963_computer)
https://en.wikipedia.org/wiki/Titan_(1963_computer)

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Outline

• Memory hierarchy overview and principles

• Fleshing out the processor-memory interface

• Data storage methodologies

3

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

The Memory Story so Far…

PC

In
st

ru
ct

io
n

M
em

or
y
Adder

4

Register
File

ALU

MUX

MUX

Data
Memory

D
ec

od
er

 U
ni

t

MUX

Instruction and data memories as
storage components (just like
register files) with well-defined

interfaces!

4

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

In Reality…

5

Credit: Hassan, et al. “A Reusable
Characterization of the Memory

System Behavior of SPEC2017 and
SPEC2006”. ACM TACO 2021

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Cache Size

Modern applications are
demanding more and more
memory, and are accessing

it less predictably!

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

In Reality…

6

Advances in processor
designs are directly related
to the increased demand

for memory!

Credit: Computer Architecture: A
Quantitative Approach (p 80)

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Principles of Storage Device Design

• To accommodate increasing memory demands, hardware devices need to be
large enough to meet these demands

• The performance improvements of memory devices does not scale at the
same rate as processor performance ➡ memory has become a bottleneck
over time!

• Smaller storage devices (e.g., registers) tend to be faster (and more expensive
due to having more transistors) than larger storage devices… there is a size
versus speed trade-off!

• Do we want a large memory or a fast memory?

7

We want a large AND fast
memory!

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

StorageStorage

The Memory Hierarchy

8

CPU

L1 Cache

Re
gi

st
er

 F
ile

L2 Cache L3 Cache

CPU

L1 Cache

L2 Cache

Main Memory

10s of bytes,
hundreds of
picoseconds

10s of kilobytes,
ones of

nanoseconds

100s of kilobytes,
5-10 nanoseconds

ones of megabytes,
10s of nanoseconds

1s-10s of gigabytes,
hundreds of

nanoseconds

1s-10s of terabytes,
ones of

milliseconds

Private

Private

Shared

Shared
Shared

volatile non-volatile

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Principles of the Memory Hierarchy

• Applications tend to exhibit locality, so it is likely that spatially similar (i.e., the
next address) or temporally similar (i.e., recently used) data are going to be used
again

• To capture varying degrees of locality, the memory system tends to be organized
hierarchically so that faster devices (registers and caches) tend to be accessed
first by the processor (i.e., smaller, faster devices towards the processor)

• As components move further away from the processor, they are more likely to
be shared by multiple processors/caches for the same functionality

• “Storage” is said to be non-volatile as it retains its state throughout a crash ➡
this is possible due to a different composition of integrated circuitry

9

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Consider the Python program below. What are some of
the steps happening in the microarchitecture

(specifically the memory system!) to implement this
behavior?

10

Chat with your neighbor(s)!

f = open(“filename.txt”, “w”)
f.write(“Hello world!”)
f.close()

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Revisiting Instruction versus Data Memory

11

CPU

Inst Data

L1Instruction
Cache Data Cache

L2 Cache

The processor views instruction/data
memory as accessing the instruction/

data cache!

The L2 cache acts as a shared cache for
both instructions and data! This way,

there is only one memory device for all
processed values

This means that the number of cycles to
access data in memory is non-

deterministic…

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Revisiting Instruction versus Data Memory

12

PC

In
st

ru
ct

io
n

M
em

or
y
Adder

4

Register
File

ALU

MUX

MUX

Data
Memory

D
ec

od
er

 U
ni

t

MUX

Instruction
Port

Data
Port

“Ports” are physical interfaces
that describe connections
between components ➡

processor and cache

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Handling Non-Deterministic Access Latency

• Accesses to the instruction/data caches are fast if the data resides in the
cache (i.e., a cache hit)

• On a cache miss, the latency may be longer… and our processor needs to be
able to handle this case!

• In the implementation of the port, the processor must implement a load-store
queue to track the presently outstanding requests

• If an operation takes longer than the expected cycle time, our processor
pipeline will stall until the data comes back to the processor ➡ this is the
same mechanism as handling a hazard!

13

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Suppose a processor with a five-stage pipeline is
implemented with the expectation that the data cache

hit rate will be 80%. How many entries should the
load-store queue in the data port support?

14

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Using Memory in Applications

• Typically, running applications use “main memory” to store global and local
variables during its execution

• Using this terminology, “main memory” refers to all of the memory system
before long term storage (i.e., flash, solid-state drives, hard disk drives)

• If an application would like data to be stored in a long-term storage device (i.e.,
a file in the file system), it needs to use a system call (i.e., “open” in Python)
where the operating system will interface with that device directly

• In practice, this means using a special subset of the instruction set in which the
processor issues a particular set of memory instructions that flush data from the
volatile state (e.g. caches and memory) to the long term storage device

15

CS181CA-PO: Computer Architecture Fall 2025, Introducing the Memory Hierarchy

Takeaways

• Modern applications use a lot of memory, so we need a memory system!

• The memory system gives the illusion of a large, fast memory by leveraging
typical application behaviors to organize storage components hierarchically

• We can leverage our memory system characteristics to implement “instruction
memory” and “data memory” in our processor

• If we want to store data through a power loss (e.g., in the file system), we
need to explicitly flush data contents to a long-term storage device

16

