
CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

More Hazards and False
Dependences

1

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Outline

• Continuing discussion of hazards

• Formalizing and optimizing hazard checking

• The pitfall of hazard checking

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

(From Wed) Hazards in a Pipelined Processor

• Structural hazards: occurs when a hardware component cannot support the
combination of instructions to execute within the same clock cycle

• Data hazards: occurs when there exists a dependence between two
instructions in the pipeline, where the result from an incomplete instruction is
relevant for the execution of another instruction

• Control hazards: occurs when a decision needs to be made about the next
instruction to execute before that decision has been computed

3

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

(From Wed) Examples of a Structural Hazard

🍞 🥜 🍓 🍞🍞 🥜

🍞 🥜 🥜 🍞🍞 🍓

🍞 🥜 🥜 🍞🍞 🍓

🍞 🥜 🥜 🍞🍞 🍓
t0 t1 t2 t3 t4 t5 t6 t7 t8

We depend on the same
component for different
executions at the same

cycle!

If the component does not
support multiple utilities in
the same cycle, then we

have a hazard!

4

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

(From Wed) Data Hazard Example

lw r1, r2

lw r2, r3

lw r3, r4

lw r4, r5

add r1, r1, r2

mod r1, r1, r1

sub r2, r1, r2

div r2, r2, r2

dest src

Is this a data
hazard?

No! No dependence
between instructions.

If all registers were
switched…

Is this a data
hazard?

Yes! Produced output
are needed in
subsequent
instructions

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

(From Wed) Resolving Data Hazards

• Option 1: Use the compiler to re-organize
instructions! This will allow many hazards to
resolve themselves before execution

• Option 2: “Bubble” or stall the pipeline when a
hazard is detected to wait for the

• Option 3: Forwarding data from one location in
the pipeline to another stage that needs the data

6

add r1, r1, r2

mod r1, r1, r1More instructions
here!

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

(From Wed) Resolving Data Hazards (Bubble)

7

add r1, r1, r2

mod r1, r1, r1

Inst Fetch Decode Execute Writeback

Inst Fetch Decode Execute

Memory

Stall Stall Memory Writeback

sub r2, r1, r2 Inst Fetch Decode …

t0 t1 t2 t3 t4 t5 t6 t7 …

Read After
Write

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Hazard Checking Unit

• To detect if there is a data hazard, the processor needs to deploy a hazard
checking unit

• The hazard checking unit examines the state of the pipeline registers to look
for inter-instruction dependencies!

• If such a dependence exists, then the processor needs to signal the
appropriate components to “do nothing” until the hazard is resolved — only at
this point should the signals be reset with the next steps of execution

• This means components may be highly under-utilized!

8

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Other Types of Data Hazards

int a = *addr1;
a = 100;

lw r1, r2
ldi r1, 100

IF D Ex Mem

IF D Ex

WB
Write After

Write

int a = *addr1;
*addr1 = 100;

lw r1, r2
sw r2, 100

IF D Ex Mem

IF D Ex

WB
Write After

Read
Mem

CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Resolving Data Hazards (Forwarding)

10

add r1, r1, r2

mod r1, r1, r1

Inst Fetch Decode Execute Writeback

Inst Fetch Decode Execute

Memory

Memory Writeback

sub r2, r1, r2 Inst Fetch Decode

t0 t1 t2 t3 t4 t5 t6 t7 …

Execute Memory Writeback

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Forwarding Processor

PC

In
st

ru
ct

io
n

M
em

or
y

Adder
4

Register
File

ALU

MUX

MUX

Data
Memory

D
ec

od
er

 U
ni

t

MUX

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Forwarding Processor

Register
File

ALU

MUX

imm

MUX

MUX

…

Chat with your neighbor(s)!

Where does the selection of
the newly introduced

multiplexors come from?

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Hazard Checking Summary

• Structural hazards are resolved in the pipeline design

• Data hazards are resolved at runtime by either stalling or forwarding

• Control hazards are resolved by… stay tuned!

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Chat with your neighbor(s)!

🍞 🥜 🍓 🍞🍞 🥜

🍞 🥓 🍅🥬 🫑

⏲ 🍳 🧂🥓

🍞
Both pepper!

Suppose we have a program in which two instructions
refer to the same register name, but themselves refer
to different variables. Would a hazard checking unit

view these instructions as dependent?

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

False Dependencies

int a = 100;

int b = 100;

int c = 100;

int d = 100;

int e = 100;

int f = 100;

int g = 100;

int i = 100;

ldi r1 100

ldi r2 100

ldi r3 100

ldi r4 100

ldi r5 100

ldi r6 100

ldi r7 100

ldi r1 100

Kind of like having two
ingredients named

pepper!

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Takeaways

• Hazards are a natural byproduct of pipelining a task

• Processor hazards can be classified as structural, data, or control

• Structural hazards must be resolved in the design of the data path

• Data hazards can be addressed in software, but hardware must be able to
account for any hazard

• Sometimes software produces false dependencies! Hardware will handle
instructions as if they are dependent, but in practice they are not… bad news!

CS181CA-PO: Computer Architecture Fall 2025, More Hazards and False Dependencies

Exit Ticket

https://forms.cloud.microsoft/r/7KVf6ex7f5

