
CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Pipelining Hazards

1

Homework 1: now due 
October 3



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards2

Image credit: https://
patentimages.storage.googleapis.co

m/bb/2a/e8/0470966433594d/
US5019967.pdf



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Outline

• Reviewing pipeline pitfalls


• Introducing pipeline hazards


• Hazard mitigation strategies

3



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Reviewing the Pitfalls of the Pipelined Processor

• Ideal: pipeline stages execute with 
equivalent latencies


• Ideal: indefinite number of 
instructions to execute to maximize 
time with a full pipeline


• Ideal: we can start a new instruction 
every cycle

• In practice: we can do our best, but 
different components take different 
latencies


• In practice: programs have a start 
and end


• In practice: instructions have 
dependencies which may lead to 
hazards

4



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Hazards in a Pipelined Processor

• Structural hazards: occurs when a hardware component cannot support the 
combination of instructions to execute within the same clock cycle


• Data hazards: occurs when there exists a dependence between two 
instructions in the pipeline, where the result from an incomplete instruction is 
relevant for the execution of another instruction


• Control hazards: occurs when a decision needs to be made about the next 
instruction to execute before that decision has been computed

5



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Examples of a Structural Hazard

🍞 🥜 🍓 🍞🍞 🥜

🍞 🥜 🥜 🍞🍞 🍓

🍞 🥜 🥜 🍞🍞 🍓

🍞 🥜 🥜 🍞🍞 🍓
t0 t1 t2 t3 t4 t5 t6 t7 t8

We depend on the same 
component for different 
executions at the same 

cycle!

If the component does not 
support multiple utilities in 
the same cycle, then we 

have a hazard!

6



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Example of a Structural Hazard

PC

In
st

ru
ct

io
n 

M
em

or
y

Adder
4

Register 
File

ALU

MUX

MUX

Data 
Memory

D
ec

od
er

 U
ni

t

MUX

M
em

or
y

Memory

7



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Example of a Structural Hazard

8

lw r1, r2

lw r2, r3

lw r3, r4

lw r4, r5

Inst Fetch Decode Execute Data 
Memory Writeback

Inst Fetch Decode Execute Data 
Memory Writeback

Inst Fetch Decode Execute Data 
Memory Writeback

Inst Fetch Decode Execute Data 
Memory Writeback

Memory

Memory

Memory

Memory

Memory

address
data in data out

read/write
Chat with your 

neighbor(s)! 
Is this a structural 

hazard?



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Data Hazards

• Planned instructions cannot execute during a data hazard because data that 
is needed to execute the instruction is not yet available


• This interaction between instructions is sometimes called a dependence 
(plural, dependences or dependencies — depending on which sounds weirder 
to you)


• Data hazards are resolved once the necessary result is produced

9



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Data Hazard Example

10

lw r1, r2

lw r2, r3

lw r3, r4

lw r4, r5

add r1, r1, r2

mod r1, r1, r1

sub r2, r1, r2

div r2, r2, r2

dest src

Is this a data 
hazard?

No! No dependence 
between instructions. 

If all registers were 
switched…

Is this a data 
hazard?

Yes! Produced output 
are needed in 
subsequent 
instructions



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Resolving Data Hazards

• Option 1: Use the compiler to re-organize 
instructions! This will allow many hazards to 
resolve themselves before execution


• Option 2: “Bubble” or stall the pipeline when a 
hazard is detected to wait for the 


• Option 3: Forwarding data from one location in 
the pipeline to another stage that needs the data

11

add r1, r1, r2

mod r1, r1, r1More instructions 
here!



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Resolving Data Hazards (Bubble)

12

add r1, r1, r2

mod r1, r1, r1

Inst Fetch Decode Execute Writeback

Inst Fetch Decode Execute

Memory

Stall Stall Memory Writeback

sub r2, r1, r2 Inst Fetch Decode …

Chat with your neighbor(s)! 

What cycle will the “sub” 
hazard resolve? What cycle 

will the instruction 
complete?

t0 t1 t2 t3 t4 t5 t6 t7 …



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Hazard Checking Unit

• To detect if there is a data hazard, the processor needs to deploy a hazard 
checking unit


• The hazard checking unit examines the state of the pipeline registers to look 
for inter-instruction dependencies!


• If such a dependence exists, then the processor needs to signal the 
appropriate components to “do nothing” until the hazard is resolved — only at 
this point should the signals be reset with the next steps of execution


• This means components may be highly under-utilized!

13



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Resolving Data Hazards (Forwarding)

14

add r1, r1, r2

mod r1, r1, r1

Inst Fetch Decode Execute Writeback

Inst Fetch Decode Execute

Memory

Memory Writeback

sub r2, r1, r2 Inst Fetch Decode

t0 t1 t2 t3 t4 t5 t6 t7 …

Execute Memory Writeback



CS181CA-PO: Computer Architecture Fall 2025, Pipelining Hazards

Takeaways

• Hazards are a natural byproduct of pipelining a task


• Processor hazards can be classified as structural, data or control


• Structural hazards must be resolved in the design of the data path


• Data hazards can be addressed in software, but hardware must account any 
potential hazard

15


