
CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

More Assembly!

1

Check In 1 in class today
and colloquium at HMC right
after class (mask required)

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Kathleen Booth, creator of
the original assembly

language (ARC2)

Andrew Booth, creator of
Booth multiplication

algorithm

Xenia Sweeting, research
assistant!

Image credit: https://hackaday.com/
2018/08/21/kathleen-booth-assembling-

early-computers-while-inventing-
assembly/2

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Outline

• Revisiting Instruction Classes

• Interpreting “Immediates” in RISC-V instructions

• Check-In 1

3

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Remember from last time…

• Opcodes dictate what instructions are used and how they should be
interpreted

• Assembly instructions can generally be classified as one of…

Data Transfers Computations Control Logic

4

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Data Transfers

• Moving data from memory to the register state or vice versa

• Data transfer clobbers previous state!

Register File

fast, limited
capacity slow, large

capacity

Memory
A B C

0xC0FFEE

ld A, 0xC0FFEE

5

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Data Transfers

6

x86 RISC-V

movw src, dest

lw dest, addr

Source and
destination can be

registers or memory
addresses!

sw src, addr

Fetch data
from memory

Store data to
memory

??? Move data to
different register

??? Place an integer
in register

movb (move byte) ➡ 1 byte
movw (move word) ➡ 2 bytes
movl (move long) ➡ 4 bytes

movq (move quadword) ➡ 8 bytes

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Computations

7

x86 RISC-V (register-
register)

RISC-V (register-
immediate)

arithmetic add, sub, … add, sub, … addi, …

logical and, or, xor and, or, xor andi, ori, xori

shift shl, shr, sar, sal sll, srl, sra slli, srli, srai

comparison cmp slt[u] slti[u]

Why no subi?

In RISC-V, movw
imm, dest is

expressed as addi
dest, x0, imm!

Integer in the raw
instruction bytes

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Case Study: Immediates in RISC-V

8

0xE5B18393

0b11100101101100011000001110010011
I-typex7addx30b111001011011

0b111001011011
0b000110100100
0b000110100101

Flip!

Add 1! addi x7, x3, -421

Negative?

Convert to binary!

Expand immediate to
base 10!

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Case Study: Immediates in RISC-V

9

0x52338263

0b01010010001100111000001001100011
Convert to binary!

Expand immediate to
base 10!

I-type
imm

[4:1|11]beqx7x3
imm

[12|10:5]

TODO: as a
class!

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Control Logic

10

x86 RISC-V (register-
register)

unconditional jmp jal, jalr

Conditional je, jne, js, jns, … beq, bne, blt, …

Jump to a certain
part of the code

if…

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Control Logic

• Conditional jumps: if the condition is true, then go to the destination specified
by the instruction

• For RISC-V, this is the current PC + the immediate

• For x86, this is the absolute address in the instruction

• Otherwise, go to the current PC + the size of the instruction

• For RISC-V, this is PC + 4 (B-type instructions are 4 bytes long)

• For x86, this is dependent on the instruction size

11

CS181CA-PO: Computer Architecture Fall 2025, More Assembly!

Takeaways

• High level language tokens can be described as “data transfers,”
“computations,” or “control logic”

• The processor uses expected formats to interpret instruction bytes in the
same way as the decoded opcode

12

