Data Representations and
Assembly

No class Monday, have a

good Labor Day Weekend!

CS181CA-PO: Computer Architecture 1 Fall 2025, Data Representations and Assembly (Part 1)

10 T o B T ' i o
._‘0000000000000000[1'00UUUUDU'UL’UU.UUDB'DUUUGUUODGOOUUIIOUDBUDOUDO00000000000'.0'00'

R3340 41 42 4 .

\

“You may scoff at the low-tech but this

“Fortran program: data has survived longer than most CD-

PIFRA=(A(JB,37)-A(JB,99)/A(JB,47)” Rs will last - they rot in a decade or

SO J)

BREEEL SERRNCAEEARE PRERERAREE AR ERERSHCL RERRRERARAREREABAEDARSEREARE B ALER] 1 ERRRT
58888888088 BolecoclooloclocMpececBosessssss8sss888888883688888368888388888888S8
BoB99999999999999993F9999999999999935999999399999999999999999999939939993

|
8 9101 21314 1516 17 18 19 20 21 2223 24 25 26 27 28 22 20 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6364 656667 6863 70 71 72 713 74 1576 77 18 79 80 j
M UNITED KINGDOM LIMITED 5N81

o

e

w o
& O
Wt O
o o
- o~ DO

R

CS181CA-PO: Computer Architecture 2 Fall 2025, Data Representations and Assembly (Part 1)

https://en.wikipedia.org/wiki/Punched_card

Binary for Data Representation

e “on/off” is the simplest way to convey state:
e switch, punch card, electrical signal...

» Each bit (binary digit) doubles the information we can convey

 Some data can be interpreted multiple ways
* int v float v char O O
e signed v unsigned -, -,

e data v control signal

CS181CA-PQO: Computer Architecture 3 Fall 2025, Data Representations and Assembly (Part 1)

Outline

* \ery brief overview of hardware platforms (from
Wednesday)

CS181CA-PQO: Computer Architecture 4 Fall 2025, Data Representations and Assembly (Part 1)

Types of Hardware Platforms

 Embedded Devices/Internet of Things (loT)
* Personal Mobile Devices (PMD)

» Desktop B ——

e Server

» Cluster/Warehouse-Scale \/'
//

CS181CA-PQO: Computer Architecture 5

), The Hardware-Software Interface

Types of Hardware Platforms

 Embedded Devices/Internet of Things (loT): cost, energy, RISC-V
specialized application performance

* Personal Mobile Devices (PMD): cost, energy, media
performance, responsiveness

* Desktop: combination of price and performance, energy,

graphics performance

o Server: throughput, availability, energy, scalability

* Cluster/Warehouse-Scale: throughput, combination of
price and performance, energy proportionality

CS181CA-PO: Computer Architecture 6 Fall 2025, The Hardware-Software Interface

Outline

* Review of binary and hexadecimal representations
 Review of data storage in memory

* |ntroducing storage of instructions in memory

CS181CA-PO: Computer Architecture 7

Goal: you will seldom be
asked to convert data
representations by hand;

understanding how
computers “think” Is a
fundamental of architecture
that will keep coming up

Fall 2025, Data Representations and Assembly (Part 1)

Quick Review: Decimal (base 10) v Binary (base 2)

 Numerical base is a shorthand for counting
 Each place in a decimal number is an additional power of 10
 Each place in a binary number is an additional power of 2

 Computers “think” in base 2 but it’s helpful to know how to convert between
the two to make sense of debugging output, etc.

0000101000, | se——) 23 4 25 = 8 + 32 = 40

20 2° 24 23 22 2

7 20
MSB LSB

CS181CA-PQO: Computer Architecture 8 Fall 2025, Data Representations and Assembly (Part 1)

Hexadecimal (base 16)

16 digits: 0-9 and a-f (a=10, b = 11, etc.)
* Often used by computer scientists because binary numbers get long
 Computers don’t actually “think” in hexadecimal

* [rick for conversion: every four bits is a hex digit

-}-} 8*160 + 2*161 = 8 + 32 = 40

CS181CA-PQO: Computer Architecture 9 Fall 2025, Data Representations and Assembly (Part 1)

Negative Binary Numbers

* |n decimal: use “—" to denote a negative number
 There is no “—" in binary: what to do? 0b00101000
| flip: Ob11010111
 Two’s complement . 1
 Negate a number by flipping the bits and adding 0b11011000

* Turns out, math just works
 Easy to check if number is negative (1 in MSB = negative)

» Easy to cast to larger number (“sign-extend” by copying
MSB)

CS181CA-PO: Computer Architecture 10 Fall 2025, Data Representations and Assembly (Part 1)

Chat with your neighbor(s)!

Flip the sign of the following numbers so
that they are an 8 bit binary number...

Ob01111111 12310 OxCA

CS181CA-PO: Computer Architecture 11 Fall 2025, Data Representations and Assembly (Part 1)

Bit Manipulation

* We still have addition, subtraction, etc (same principles, same mechanics)
 Also have: bitwise-and (&), or (|), xor (*), not (™)

 Examples: use bitmasks to set (or w/ 1), clear (and w/ 0), or flip (xor x/ 1)
certain bits

 Shifts: right (>>) and left (<<)
o |eft shift mathematically equivalent to multiplying by powers of 2

* Right shift: logic (pad w/ 0s) or arithmetic (pad w/ sign-extend)

CS181CA-PQO: Computer Architecture 12 Fall 2025, Data Representations and Assembly (Part 1)

Interpreting Data

 Same bits in memory, different operations/interpretations

* Type specifiers define semantics of what kind of operations are expected for a
piece of data

 When programming in C++, using [u]int<SIZE>_t e.g., uint16_t or uint32_t

» Just like how programs need to interpret bits as types, the processor
Interprets instruction bits as types!

CS181CA-PQO: Computer Architecture 13 Fall 2025, Data Representations and Assembly (Part 1)

Storing Data in Memory

00 OO‘OO‘OO‘OO‘OO‘OO‘OO‘OO OO‘OO‘OO‘OO‘OO[

Oxff00 Oxff01 Oxff02 Oxff03 Oxff04 Oxff05 Oxff06 OxffO7 (oxffpg Oxff09 Oxff0a OxffOb OxffOc OxffOd

What happens when we need to
store multiple bytes?

Each address
stores one byte!

CS181CA-PO: Computer Architecture 14 Fall 2025, Data Representations and Assembly (Part 1)

Numbers in Memory

 Memory stores information for a computer

 Each byte (8 bits) of data has a location (address) in memory

* We often compute on 32-bit or 64-bit numbers (4 or 8 bytes) how are they

stored?
a

a+ 1
a+ 2

a+J3

CS181CA-PQO: Computer Architecture

1F

88

3A

85

——————— > 8 g
7T RE
\ ’] 1
S ' 3A . a+ 1
I% o YA *: Little Endian
= : 88 a+2
‘s < ‘,': _______ i
' 1F ¢ a+ 3
___________ ad '
15 Fall 2025, Data Representations and Assembly (Part 1)

Chat with your neighbor(s)!

What is an advantage of a number
stored In little endian format?

Little Endian Arithmetic

uint32_t x=0x1F883A85;
uint32_t y = OX53E7AS35;
uint32_tz=x+y;

a b
a+ 1 3A 7A b+ 1
242 8 | b+
a+3 T 05 b3

CS181CA-PQO: Computer Architecture 17 Fall 2025, Data Representations and Assembly (Part 1)

Not distinguishing between
Storing Programs data and instructions is why

buffer overflow attacks are
possible!

* |nstructions are stored the same way as numbers... binary digits!

* |nstructions live In memory

 The CPU needs to have a way of interpreting an instruction, just as any other
data type stored in memory...

e Consider the hexadecimal number: Ox00350513

 Could be interpreted as the decimal number 3474707 or as the RISC-V
assembly instruction “increment register 10 by 3”!

CS181CA-PO: Computer Architecture 18 Fall 2025, Data Representations and Assembly (Part 1)

Storing Programs

High-level language: a

portable language such as Assembly language: a Machine language: a binary
C, C++, Java that is symbolic representation of representation of machine
composed of words and machine instructions Instructions

algebraic notation

compiler assembler

Definitions from

textbook Chapter 2

CS181CA-PO: Computer Architecture 19 Fall 2025, Data Representations and Assembly (Part 1)

Takeaways

 Computers represent all data as binary values to easily interpret electrical
signhals

 We can get the value of a digit in any base to perform conversions

e Data is typically represented as little endian to easily fetch values from
memory!

https://

forms.cloud.microsoft/r/
m2Jx8KNj9J

CS181CA-PQO: Computer Architecture 20 Fall 2025, Data Representations and Assembly (Part 1)

