Data Representations and
Assembly

No class Monday, have a

good Labor Day Weekend!
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https://en.wikipedia.org/wiki/Punched_card

Binary for Data Representation

e “on/off” is the simplest way to convey state:
e switch, punch card, electrical signal...

» Each bit (binary digit) doubles the information we can convey

 Some data can be interpreted multiple ways
* int v float v char O O
e signed v unsigned -, -,

e data v control signal
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Outline

* \ery brief overview of hardware platforms (from
Wednesday)
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Types of Hardware Platforms

 Embedded Devices/Internet of Things (loT)
* Personal Mobile Devices (PMD)

» Desktop B ——

e Server

» Cluster/Warehouse-Scale \/'
//
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Types of Hardware Platforms

 Embedded Devices/Internet of Things (loT): cost, energy, RISC-V
specialized application performance

* Personal Mobile Devices (PMD): cost, energy, media
performance, responsiveness

* Desktop: combination of price and performance, energy,

graphics performance

o Server: throughput, availability, energy, scalability

* Cluster/Warehouse-Scale: throughput, combination of
price and performance, energy proportionality
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Outline

* Review of binary and hexadecimal representations
 Review of data storage in memory

* |ntroducing storage of instructions in memory
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Goal: you will seldom be
asked to convert data
representations by hand;

understanding how
computers “think” Is a
fundamental of architecture
that will keep coming up
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Quick Review: Decimal (base 10) v Binary (base 2)

 Numerical base is a shorthand for counting
 Each place in a decimal number is an additional power of 10
 Each place in a binary number is an additional power of 2

 Computers “think” in base 2 but it’s helpful to know how to convert between
the two to make sense of debugging output, etc.

0000101000, | se——) 23 4 25 = 8 + 32 = 40

20 2° 24 23 22 2

7 20
MSB LSB
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Hexadecimal (base 16)

16 digits: 0-9 and a-f (a=10, b = 11, etc.)
* Often used by computer scientists because binary numbers get long
 Computers don’t actually “think” in hexadecimal

* [rick for conversion: every four bits is a hex digit

-}-} 8*160 + 2*161 = 8 + 32 = 40
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Negative Binary Numbers

* |n decimal: use “—" to denote a negative number
 There is no “—" in binary: what to do? 0b00101000
| flip: Ob11010111
 Two’s complement . 1
 Negate a number by flipping the bits and adding 0b11011000

* Turns out, math just works
 Easy to check if number is negative (1 in MSB = negative)

» Easy to cast to larger number (“sign-extend” by copying
MSB)
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Chat with your neighbor(s)!

Flip the sign of the following numbers so
that they are an 8 bit binary number...

Ob01111111 12310 OxCA
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Bit Manipulation

* We still have addition, subtraction, etc (same principles, same mechanics)
 Also have: bitwise-and (&), or (|), xor (*), not (™)

 Examples: use bitmasks to set (or w/ 1), clear (and w/ 0), or flip (xor x/ 1)
certain bits

 Shifts: right (>>) and left (<<)
o |eft shift mathematically equivalent to multiplying by powers of 2

* Right shift: logic (pad w/ 0s) or arithmetic (pad w/ sign-extend)
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Interpreting Data

 Same bits in memory, different operations/interpretations

* Type specifiers define semantics of what kind of operations are expected for a
piece of data

 When programming in C++, using [u]int<SIZE>_t e.g., uint16_t or uint32_t

» Just like how programs need to interpret bits as types, the processor
Interprets instruction bits as types!
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Storing Data in Memory

00 OO‘OO‘OO‘OO‘OO‘OO‘OO‘OO OO‘OO‘OO‘OO‘OO[

Oxff00  Oxff01  Oxff02 Oxff03 Oxff04 Oxff05 Oxff06 OxffO7 (oxffpg Oxff09 Oxff0a  OxffOb OxffOc  OxffOd

What happens when we need to
store multiple bytes?

Each address
stores one byte!
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Numbers in Memory

 Memory stores information for a computer

 Each byte (8 bits) of data has a location (address) in memory

* We often compute on 32-bit or 64-bit numbers (4 or 8 bytes) how are they

stored?
a

a+ 1
a+ 2

a+J3
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Chat with your neighbor(s)!

What is an advantage of a number
stored In little endian format?



Little Endian Arithmetic

uint32_t x=0x1F883A85;
uint32_t y = OX53E7AS35;
uint32_tz=x+y;

a b
a+ 1 3A 7A b+ 1
242 8 | b+
a+3 T 05 b3
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Not distinguishing between
Storing Programs data and instructions is why

buffer overflow attacks are
possible!

* |nstructions are stored the same way as numbers... binary digits!

* |nstructions live In memory

 The CPU needs to have a way of interpreting an instruction, just as any other
data type stored in memory...

e Consider the hexadecimal number: Ox00350513

 Could be interpreted as the decimal number 3474707 or as the RISC-V
assembly instruction “increment register 10 by 3”!
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Storing Programs

High-level language: a

portable language such as Assembly language: a Machine language: a binary
C, C++, Java that is symbolic representation of representation of machine
composed of words and machine instructions Instructions

algebraic notation

compiler assembler

Definitions from

textbook Chapter 2
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Takeaways

 Computers represent all data as binary values to easily interpret electrical
signhals

 We can get the value of a digit in any base to perform conversions

e Data is typically represented as little endian to easily fetch values from
memory!

https://

forms.cloud.microsoft/r/
m2Jx8KNj9J
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