
CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Data Representations and
Assembly

1

No class Monday, have a
good Labor Day Weekend!

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Image Credit: Pete Birkinshaw, https://en.wikipedia.org/wiki/Punched_card

2

“Fortran program:
PIFRA=(A(JB,37)-A(JB,99)/A(JB,47)”

“You may scoff at the low-tech but this
data has survived longer than most CD-

Rs will last - they rot in a decade or
so…”

https://en.wikipedia.org/wiki/Punched_card

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Binary for Data Representation

• “on/off” is the simplest way to convey state:

• switch, punch card, electrical signal…

• Each bit (binary digit) doubles the information we can convey

• Some data can be interpreted multiple ways

• int v float v char

• signed v unsigned

• data v control signal

3

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Outline

• Very brief overview of hardware platforms (from
Wednesday)

4

CS181CA-PO: Computer Architecture Fall 2025, The Hardware-Software Interface

• Embedded Devices/Internet of Things (IoT)

• Personal Mobile Devices (PMD)

• Desktop

• Server

• Cluster/Warehouse-Scale

Types of Hardware Platforms

5

CS181CA-PO: Computer Architecture Fall 2025, The Hardware-Software Interface

• Embedded Devices/Internet of Things (IoT): cost, energy,
specialized application performance

• Personal Mobile Devices (PMD): cost, energy, media
performance, responsiveness

• Desktop: combination of price and performance, energy,
graphics performance

• Server: throughput, availability, energy, scalability

• Cluster/Warehouse-Scale: throughput, combination of
price and performance, energy proportionality

Types of Hardware Platforms

6

RISC-V

ARMv8-32, x86_32

ARMv8-64, x86_64

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Outline

• Review of binary and hexadecimal representations

• Review of data storage in memory

• Introducing storage of instructions in memory

7

Goal: you will seldom be
asked to convert data

representations by hand;
understanding how

computers “think” is a
fundamental of architecture

that will keep coming up

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Quick Review: Decimal (base 10) v Binary (base 2)

• Numerical base is a shorthand for counting

• Each place in a decimal number is an additional power of 10

• Each place in a binary number is an additional power of 2

• Computers “think” in base 2 but it’s helpful to know how to convert between
the two to make sense of debugging output, etc.

8

0b00101000
2021222324252627

23 + 25 = 8 + 32 = 40

MSB LSB

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Hexadecimal (base 16)

• 16 digits: 0-9 and a-f (a = 10, b = 11, etc.)

• Often used by computer scientists because binary numbers get long

• Computers don’t actually “think” in hexadecimal

• Trick for conversion: every four bits is a hex digit

9

0b00101000 0x28 8*160 + 2*161 = 8 + 32 = 40

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Negative Binary Numbers

• In decimal: use “—“ to denote a negative number

• There is no “—“ in binary: what to do?

• Two’s complement

• Negate a number by flipping the bits and adding 1

• Turns out, math just works

• Easy to check if number is negative (1 in MSB = negative)

• Easy to cast to larger number (“sign-extend” by copying
MSB)

10

 0b00101000
flip: 0b11010111
 + 1
 0b11011000

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Flip the sign of the following numbers so
that they are an 8 bit binary number…

11

Chat with your neighbor(s)!

0b01111111 12310 0xCA

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Bit Manipulation

• We still have addition, subtraction, etc (same principles, same mechanics)

• Also have: bitwise-and (&), or (|), xor (^), not (~)

• Examples: use bitmasks to set (or w/ 1), clear (and w/ 0), or flip (xor x/ 1)
certain bits

• Shifts: right (>>) and left (<<)

• Left shift mathematically equivalent to multiplying by powers of 2

• Right shift: logic (pad w/ 0s) or arithmetic (pad w/ sign-extend)

12

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Interpreting Data

• Same bits in memory, different operations/interpretations

• Type specifiers define semantics of what kind of operations are expected for a
piece of data

• When programming in C++, using [u]int<SIZE>_t e.g., uint16_t or uint32_t

• Just like how programs need to interpret bits as types, the processor
interprets instruction bits as types!

13

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Storing Data in Memory

14

00 00 00 00 00 00 00 00 00 00 00 00 00 00

0xff00 0xff01 0xff02 0xff03 0xff04 0xff05 0xff06 0xff07 0xff08 0xff09 0xff0a 0xff0b 0xff0c 0xff0d

00

Each address
stores one byte!

What happens when we need to
store multiple bytes?

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Numbers in Memory

• Memory stores information for a computer

• Each byte (8 bits) of data has a location (address) in memory

• We often compute on 32-bit or 64-bit numbers (4 or 8 bytes) how are they
stored?

15

0x1F883A85

1F

85

3A

88

a

a + 1

a + 2

a + 3

85

1F

88

3A

a

a + 1

a + 2

a + 3

Big Endian Little Endian

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

What is an advantage of a number
stored in little endian format?

16

Chat with your neighbor(s)!

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Little Endian Arithmetic

17

uint32_t x = 0x1F883A85;
uint32_t y = 0x53E7A35;
uint32_t z = x + y;

85

1F

88

3A

a

a + 1

a + 2

a + 3

35

05

3E

7A

b

b + 1

b + 2

b + 3

x y

memory fetch

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Storing Programs

• Instructions are stored the same way as numbers… binary digits!

• Instructions live in memory

• The CPU needs to have a way of interpreting an instruction, just as any other
data type stored in memory…

• Consider the hexadecimal number: 0x00350513

• Could be interpreted as the decimal number 3474707 or as the RISC-V
assembly instruction “increment register 10 by 3”!

18

Not distinguishing between
data and instructions is why
buffer overflow attacks are

possible!

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Storing Programs

19

x++; addi a0, a0, 1 0x00150513

compiler assembler

High-level language: a
portable language such as

C, C++, Java that is
composed of words and

algebraic notation

Assembly language: a
symbolic representation of

machine instructions

Machine language: a binary
representation of machine

instructions

Definitions from
textbook Chapter 2

CS181CA-PO: Computer Architecture Fall 2025, Data Representations and Assembly (Part 1)

Takeaways

• Computers represent all data as binary values to easily interpret electrical
signals

• We can get the value of a digit in any base to perform conversions

• Data is typically represented as little endian to easily fetch values from
memory!

20

Exit ticket!
https://

forms.cloud.microsoft/r/
m2Jx8KNj9J

