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Data Representations and 
Assembly
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No class Monday, have a 
good Labor Day Weekend!
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Image Credit: Pete Birkinshaw, https://en.wikipedia.org/wiki/Punched_card
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“Fortran program: 
PIFRA=(A(JB,37)-A(JB,99)/A(JB,47)”

“You may scoff at the low-tech but this 
data has survived longer than most CD-

Rs will last - they rot in a decade or 
so…”

https://en.wikipedia.org/wiki/Punched_card
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Binary for Data Representation

• “on/off” is the simplest way to convey state:


• switch, punch card, electrical signal…


• Each bit (binary digit) doubles the information we can convey


• Some data can be interpreted multiple ways


• int v float v char


• signed v unsigned 


• data v control signal
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Outline

• Very brief overview of hardware platforms (from 
Wednesday)
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• Embedded Devices/Internet of Things (IoT)


• Personal Mobile Devices (PMD)


• Desktop


• Server


• Cluster/Warehouse-Scale

Types of Hardware Platforms
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• Embedded Devices/Internet of Things (IoT): cost, energy, 
specialized application performance


• Personal Mobile Devices (PMD): cost, energy, media 
performance, responsiveness


• Desktop: combination of price and performance, energy, 
graphics performance


• Server: throughput, availability, energy, scalability


• Cluster/Warehouse-Scale: throughput, combination of 
price and performance, energy proportionality

Types of Hardware Platforms
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RISC-V

ARMv8-32, x86_32

ARMv8-64, x86_64
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Outline

• Review of binary and hexadecimal representations


• Review of data storage in memory


• Introducing storage of instructions in memory
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Goal: you will seldom be 
asked to convert data 

representations by hand; 
understanding how 

computers “think” is a 
fundamental of architecture 

that will keep coming up
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Quick Review: Decimal (base 10) v Binary (base 2)

• Numerical base is a shorthand for counting


• Each place in a decimal number is an additional power of 10


• Each place in a binary number is an additional power of 2


• Computers “think” in base 2 but it’s helpful to know how to convert between 
the two to make sense of debugging output, etc.
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0b00101000
2021222324252627

23 + 25 = 8 + 32 = 40

MSB LSB
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Hexadecimal (base 16)

• 16 digits: 0-9 and a-f (a = 10, b = 11, etc.)


• Often used by computer scientists because binary numbers get long


• Computers don’t actually “think” in hexadecimal


• Trick for conversion: every four bits is a hex digit
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0b00101000 0x28 8*160 + 2*161 = 8 + 32 = 40
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Negative Binary Numbers

• In decimal: use “—“ to denote a negative number


• There is no “—“ in binary: what to do?


• Two’s complement


• Negate a number by flipping the bits and adding 1


• Turns out, math just works


• Easy to check if number is negative (1 in MSB = negative)


• Easy to cast to larger number (“sign-extend” by copying 
MSB)
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 0b00101000 
flip: 0b11010111 
      +                 1 
       0b11011000
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Flip the sign of the following numbers so 
that they are an 8 bit binary number…
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Chat with your neighbor(s)!

0b01111111 12310 0xCA
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Bit Manipulation

• We still have addition, subtraction, etc (same principles, same mechanics)


• Also have: bitwise-and (&), or (|), xor (^), not (~)


• Examples: use bitmasks to set (or w/ 1), clear (and w/ 0), or flip (xor x/ 1) 
certain bits


• Shifts: right (>>) and left (<<)


• Left shift mathematically equivalent to multiplying by powers of 2


• Right shift: logic (pad w/ 0s) or arithmetic (pad w/ sign-extend)
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Interpreting Data

• Same bits in memory, different operations/interpretations


• Type specifiers define semantics of what kind of operations are expected for a 
piece of data


• When programming in C++, using [u]int<SIZE>_t e.g., uint16_t or uint32_t 

• Just like how programs need to interpret bits as types, the processor 
interprets instruction bits as types!
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Storing Data in Memory
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00 00 00 00 00 00 00 00 00 00 00 00 00 00

0xff00 0xff01 0xff02 0xff03 0xff04 0xff05 0xff06 0xff07 0xff08 0xff09 0xff0a 0xff0b 0xff0c 0xff0d

00

Each address 
stores one byte!

What happens when we need to 
store multiple bytes?
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Numbers in Memory

• Memory stores information for a computer


• Each byte (8 bits) of data has a location (address) in memory


• We often compute on 32-bit or 64-bit numbers (4 or 8 bytes) how are they 
stored?
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What is an advantage of a number 
stored in little endian format?
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Chat with your neighbor(s)!
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Little Endian Arithmetic

17

uint32_t x = 0x1F883A85; 
uint32_t y = 0x53E7A35; 
uint32_t z = x + y;
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memory fetch
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Storing Programs

• Instructions are stored the same way as numbers… binary digits!


• Instructions live in memory


• The CPU needs to have a way of interpreting an instruction, just as any other 
data type stored in memory…


• Consider the hexadecimal number: 0x00350513


• Could be interpreted as the decimal number 3474707 or as the RISC-V 
assembly instruction “increment register 10 by 3”!
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Not distinguishing between 
data and instructions is why 
buffer overflow attacks are 

possible!
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Storing Programs
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x++; addi   a0, a0, 1 0x00150513

compiler assembler

High-level language: a 
portable language such as 

C, C++, Java that is 
composed of words and 

algebraic notation

Assembly language: a 
symbolic representation of 

machine instructions

Machine language: a binary 
representation of machine 

instructions

Definitions from 
textbook Chapter 2
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Takeaways

• Computers represent all data as binary values to easily interpret electrical 
signals


• We can get the value of a digit in any base to perform conversions


• Data is typically represented as little endian to easily fetch values from 
memory!
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Exit ticket!
https://

forms.cloud.microsoft/r/
m2Jx8KNj9J


