Welcome to Computer Architecture!

As a convention in this class, say your name before you speak to the group!

Introductions!

Name, Year, College

A recent class that you loved (doesn't have to be computer science!)

Something that you are looking forward to this semester

Chat with your neighbor(s)!

So, how does a computer actually run a program? Be as detailed as possible!

What is computer architecture?

What computer architecture actually is

Like almost every

"Computer archite specifically, how so

Three general part

Computer architecture gets fun when we consider the *interaction* between these parts!

ł C

pf a computer;

- ISA (instruction set architecture): what instructions can the computer execute and how are they defined?
- Microarchitecture: how does the CPU actually implement the ISA?
- Hardware system: what physically makes up the computer?

Questions we'll answer

- How is a program represented on a computer?
- What is a CPU? How does it work?
 - stored bits to instructions?
 - instructions to tasks?
- How is data efficiently stored and used?
- What is the relationship between hardware and software?

- How does hardware use parallelism for efficiency?
- What's the history of the field? How do we feel that history today?
- Is my hardware secure? What should I be scared of? What could be done?
- What's the relationship between hardware and the environment?

Chat with your neighbor(s)!

How do we measure whether one computer is "better" than another? Get creative — go beyond speed!

How will we study these things?

• Try to "invent" them ourselves as much as possible!

- Simulate!
 - You will use C++ simulators and emulators: custom scaffolding and gem5 for more complicated designs
 - Allows us to evaluate design choices!

Caveat: we need to understand our simulators and their limitations to appreciate the takeaways!

What won't be taught in this course...

- We use C/C++ programming languages as a tool to study computer architecture. While you will have ample opportunity to practice, this is not a C/ C++ class!
 - You should feel comfortable using malloc/new and free/delete, etc
 - You should feel comfortable using a debugger
- Converting binary to decimal, basic binary arithmetic, binary operators
 - We will cover these concepts very quickly so that we can get to the cool stuff!

Course Structure and Policies

• Course website: https://cs.pomona.edu/classes/cs181ca/

Grading

Check-Ins (50%)

Assignments (40%)

Check-Ins (standards-based grading)

Check-In 1.

Ut hendrerit semper vel class aptent taciti sociosqu. Ad it a torquent per conubia nostra inceptos himenaeos.

This isn't what I was looking for because...

Assignments

Feedback

- E-mail
- In-person (after class, in office hours)
- Anonymous feedback form on course website
- Department and college-wide resources

Hold me accountable!
Feedback only works if
I follow up on it

Chat with your neighbor(s)!

Talk about some of the AI course policies you've used so far. What seems to work well? How has your personal usage aligned/failed to align with these policies?

Let's build the Al Policy for CS181CA!

Group Discussion Policy, Things to Think About

- Constructing an inclusive environment in which discussion participants are encouraged to take risks;
- Ensuring discussion participants come to the discussion prepared to be effective participants;
- Initiating discussion with engaging, relevant topics or challenges;
- Encouraging active listening;
- Helping participants digest what they are hearing;
- Managing and facilitating the flow of the session;
- As needed, help the group reach a satisfactory closure point.

Let's build the Discussion Policy for CS181CA!