
Lab 7 Cache Side Channel Lab

As described in class, timing side channels are a feature of shared caches in which a process
may inadvertently leak information about which data it uses based on the state of data in a
cache. One of the key mechanisms that an adversary may take advantage of to control for what
information is leaked is to control the contents of the cache state. In particular, an adversary
may fill the cache with dummy data during a prime and probe attack to ensure that a victim’s
sensitive data is evicted by priming the cache state prior to later probing the cache to see if the
sensitive information is there.

One of the open questions from class was how an adversary goes about ensuring that a victim’s
data is evicted from the cache. Ultimately, this is achieved by reverse engineering the caching
strategies and using this learned information to fill the cache. In this lab, you will be writing
programs to help perform this reverse engineering. If you then wanted to use this information to
perform an attack, you could use the learned context about the cache construction to selectively
evict sensitive data from the cache state, and then later query that cache to see if the data exists.
This would provide context as to the victim’s behavior with respect to using that sensitive shared
data.

1 Getting Started
Start by getting the materials for this lab from the course page. From inside your cache assing-
ment stencil, you can do so by running:

1 wget https://cs.pomona.edu/classes/cs181ca/labs/lab07-tests.zip
2 unzip lab07-tests.zip
3 mv lab07-tests/configs/* configs/example/gem5_library/

You should not need to recompile gem5 for this lab.

2 Learning Cache Sizes
Suppose we are running on an unknown platform (e.g., our attack is running on hardware owned
by the victim). If this is the case, then it is unlikely that we would know any of the configuration
details about the victim’s memory system (e.g., cache size, associativity, etc). As an adversary,
our goal is to control the contents of the data in the cache. Therefore, to know how much dummy
data we may want to load into the cache, we should first learn how big the cache is!

If we want to learn about the configuration of the memory system, we should start by writing
an application that goes to memory. Because arrays are essentially blobs of data in memory, we
can do so by creating a big array, and accessing it in sequence. Look in the lab07-tests/src
directory. Notice that, in this directory, there’s a sample file (test-16kB.c) to get started, which
we can build by calling make test-16kB from inside the lab07-tests directory. The resulting
binary goes to the lab07-tests/bin directory.

For completeness, the test-16kB.c file looks like the following:

1 of 4 CS181CA Fall 2025

https://ieeexplore.ieee.org/document/7163050/

Lab 7 Cache Side Channel Lab

1 int
2 main(int argc, char **argv)
3 {
4 unsigned long long BLOCK_SIZE = 64;
5 unsigned long long SIZE = 16 * 1024;
6 char arr[SIZE];
7

8 for (unsigned long long i = 0; i < SIZE; i += BLOCK_SIZE) {
9 arr[i]++;

10 }
11

12 return 0;
13 }

2.1 Measuring Performance
If we want to see how long our program will take to execute, we can run it on our con-
figured platform and measure the performance! Fortunately, gem5 does all of the measur-
ing for us, so we don’t need to add timers or anything to our source. To run, we can
use the command ./build/X86/gem5.debug configs/example/gem5_library/lab07-secret-
config1.py --benchmark=lab07-tests/bin/test-16kB. This allows us to specify the binary
to run by passing it via the --benchmark flag whereas the hardware configuration is specified
with the Python configuration script. Note, there are three candidate secret configuration scripts
that you can use!

Once we start running our workload, we can analyze the outputs to determine the “perfor-
mance” (or runtime speed) of our run. We can do this by opening the m5out/stats.txt file,
but our lives will be much easier if we automate this process. Let’s write a Python script that
prints out the execution time for our run!

1 with open(f'm5out/stats.txt', 'r') as f:
2 lines = f.readlines()
3 time = 0.
4 for line in lines:
5 if 'simSeconds' in line:
6 time = float(line.split()[1])
7

8 print(f'execution time:\t{time}')

If this script is called time-per-access.py, then we can get the execution time printed out
cleanly by running python3 time-per-access.py.

2.2 Inferring Cache Size from Performance
Unfortunately, a single performance metric in isolation does not provide enough context to be
able to figure out the cache size. If we wanted to reverse engineer the size, we could do so by
using the motivating goals for using caches to infer what is going on underneath the hood! In
particular, we know that caches are designed to take a small amount of data and ensure fast
access to it. Therefore, if we access enough data, all of a sudden our performance should be
really slow – your goal is to write a set of programs that measure and study at what point our
performance starts to get slow! (solution on next page)

2 of 4 CS181CA Fall 2025

Lab 7 Cache Side Channel Lab

Hopefully, you created a bunch of workloads for which the array size gets increasingly large.
After you do this, you will want to run each of these input sizes through gem5 and save the outputs
in different directories (e.g., ./build/X86/gem5.debug -d config1-test16kB configs/...).
From here, we can modify our time-per-access.py to print the runtime for each of the outputs.

What do you notice about the outputs?1 Is this a function of the cache behavior or something
else? As it turns out, our application looping over bigger and bigger arrays will run slower because
there is more work to do! If we want to know the performance on a per-instruction basis, we
should use a different metric (cycles per instruction). Let’s modify our time-per-access.py
script.

1 for outdir in ['all', 'of', 'your', 'outdirs']
2 with open(f'{outdir}/stats.txt', 'r') as f:
3 lines = f.readlines()
4 cycles = 0.
5 insts = 0.
6 for line in lines:
7 if 'simTicks' in line:
8 cycles = float(line.split()[1])
9 if 'simInsts' in line:

10 insts = float(line.split()[1])
11

12 print(f'{outdir}:\t{cycles / insts}')

When we make these modifications, what happens this time around?2 Why do you think
this is?3 Try extending your workload to see if you can visibly reduce the CPI (solution on next
page).

1They all increase monotonically.
2The CPI is more or less the same for all of our workloads.
3Applications only get to have faster memory accesses on reuse! Our workloads currently only access every

element in the array once.

3 of 4 CS181CA Fall 2025

Lab 7 Cache Side Channel Lab

Our new version of test-16kB.c could look like:
1 int
2 main(int argc, char **argv)
3 {
4 unsigned long long BLOCK_SIZE = 64;
5 unsigned long long SIZE = 16 * 1024;
6 char arr[SIZE];
7

8 for (int num_interations = 0; num_iterations < 100; num_iterations++) {
9 for (unsigned long long i = 0; i < SIZE; i += BLOCK_SIZE) {

10 arr[i]++;
11 }
12 }
13

14 return 0;
15 }

How does your CPI change if you add more ... TO BE CONTINUED

4 of 4 CS181CA Fall 2025

	Getting Started
	Learning Cache Sizes
	Measuring Performance
	Inferring Cache Size from Performance

