Lab 4

In this lab, we will first go over the “draining” portion of Homework 1 to provide a greater
intuition for what this portion of the assignment refers to. Afterwards, we will turn our attention
to gemb, and examine the various pipeline schemes that this processor uses. This will provide an
initial intuition and motivation for the tool, before we warm up to Homework 2 in next week’s
lab.

Note, if you are working on the VM, start by downloading and building a clean version of
gemb! This will take a while, so you should do this in the background while we talk about
draining!

1 Pipeline Emulator Draining

Consider the following pipeline diagram.

ladd| |IF[De|Ex|wB
sub IF |De |Ex|WB
end IF |De |Ex WB‘

)l 2la]u]s

Think about what happens here. At t0, add enters the pipeline, and the register state is
updated by the end of £3. Similarly, sub enters the pipeline at ¢ and updates the register state
at t4.

This begs the question, if we receive an end instruction at clock cycle t2, at what point should
we exit the simulation? From the Instruction Fetch (IF), it may be the case that our simulator
could check the state, and we could exit upon finding this instruction at that point. But if we
do this, we get an undesired behavior! The simulator would exit, but we still have instructions
in the pipeline that haven’t finished executing yet, so our register state will be incorrect on exit.

Given this, let’s think about the intended behavior of what we would like our pipeline to
do. At what cycle is all of the meaningful work complete? Given this, our processor emulator
needs to have some notion of exiting at the right time so that the register file reflects all of the
meaningful work completed when the simulator exits.

Things to consider. Note, there likely needs to be some mechanism in your processor emulator
that allows the executing program to see an arbitrary ending of the program.

Thinking about our discussion of pipeline hazards from class today, suppose one of the source
registers in sub is the destination register from add. That is, our program suffers from a data
hazard. If our emulated processor addresses this hazard by “bubbling,” then we would get the
following pipeline diagram.

add IF | De | Ex | WB
sub IF |De | X |Ex | WB

end [1F|) [De [Ex [WB
mEnBEaNEn

We don’t just need to worry about single dependencies between instructions! It is possible
that we have a long chain of dependent instructions that cause long stalls in the pipeline. There-
fore, we need to have a way to appropriately call end and exit at the time that makes sense

1 of CS181CA Fall 2025

Lab 4

given the current state of the pipeline. This behavior of needing to exit when the pipeline has
finished flushing its current contents is called draining, and this behavior should be part of your
implementation!

There are several mechanisms to implement draining. We will be sure to spend the first part
of lab going over various methodologies to model this behavior. If you are still stuck after lab,
be sure to come by office hours!

2 Intro to gemb

Let’s start using gemb! As you will have noticed, our course Docker container comes with a
pre-built version of gem5. This is (hopefully) helpful, because gemb is veeeery slow to compile.
Fortunately, the compilation tool (scons) is clever and only recompiles files impacted by the most
recent modifications. Even still, the binary is large enough that the linking step of compilation
takes a while!

From here, see the (course resource for using gem5 to get setup! In lab, we will go through
the various pieces of the project more explicitly.

3 Pipelining in gemb

The processor source files can be found in the src/cpu directory. In this directory, we will find
several subdirectories, including simple, minor, and 03. These directories build on the parent
BaseCPU class defined in the central src/cpu directory.

Your job in this lab is to go through the various processor models in gem5 and try to deduce
the pipeline for each processor! In doing so, your task is to:

1. determine the construction of the data path and pipeline for that processor model,
2. test the extent to which the order of execution steps is modifiable, and

3. run a microbenchmark (a small program) through each of the processor models and analyze
the performance of each!

This exercise will both encourage you to think more deeply about pipeline construction, and
it acts as an initial exposure to the gemb tool and its outputs!

2 of CS181CA Fall 2025

https://cs.pomona.edu/classes/cs181ca/resources/gem5.pdf

	Pipeline Emulator Draining
	Intro to gem5
	Pipelining in gem5

