Lab 3 Simulator Tuning and Debugging Lab

The first goal of today’s lab is to feel comfortable navigating the Gradescope submission and
to get comfortable with debugging tools by fixing buggy programs that reinforce concepts from
class.

Getting Started Start by getting the files from the course page in your development environ-
ment (wget https://cs.pomona.edu/classes/cs181ca/labs/03.zip; unzip lab03).

1 Computing Functional Simulator Scaling Overhead

The goal of today’s lab is to develop a tool that analyzes a binary file and estimates how long it
will run on a processor with a particular data path. From this, it measures how long it actually
took the program to run and produces a guess as to how accurate our model is for various
programs. When you’re done, try it out for yourself and see what kinds of programs seem to be
predicted more or less accurately for different configurations! If you can do so consistently, you
can reverse engineered your computer’s processor components!

Repository Overview In the repository, you will find a base file called buggy.cc that is the
main file we will be working with in this lab. In addition, the repository comes with a Makefile
that will help with the compilation of the program. We can build the program by calling make
buggy. There are also three subdirectories in the repository: (D bin is the directory where
the buggy executable will be written to after compilation. @) configs is a directory of sample
configurations of a processor data path; configurations are CSV (comma-separated variable) files
where components are listed alongside their latency to execute separated by a comma. @) test-
progs is a subdirectory where there are a series of tests that we can use to test our emulator.
For each test, there is a simple program and a Makefile. Upon compiling make all from the
subdirectory for that test, a binary executable and assembly program are produced (notice the
=S flag).

1.1 gdb Warm Up

Let’s start by trying to compile and run our buggy program. Use the command ./bin/buggy
to do so (do you think it will work?). Ah shoot, it didn’t run. Without closely examining the
source, we could easily find ourselves stuck, so it’s natural to want to use the debugger to help
figure out what’s going on!

To launch gdb, we can run gdb --args ./bin/buggyﬂ to launch the debugging tool. If we
want to run the command through the debugger, then we will start running the program by
calling run (or r for short). Fortunately, our debugger stops on the crash point! Let’s examine
the state.

If we look at the output, you’ll notice that our debugger is currently stopped in a C++
system file. Not that helpful! If we want to see the current call stack, we can run backtrace
or bt in our debug console to see the whole call stack. Each frame in the stack (i.e., function
call) is numbered, and we can move to the appropriate calling function by calling frame <n> or
f <n>. As a rule of thumb, the error is 99.999% likely to be in something that you've written
(we all do it!) so let’s go to the lowest frame number that refers to our source.

Once we’ve gotten to this point in the debugging process, let’s examine the state. We have
all sorts of variables that we can check, and fortunately we can see what is likely impacting the

LIf you are on a Mac, you will need to run 11db instead (see the course debugging resource for equivalent
commands).

1 of CS181CA Fall 2025


https://cs.pomona.edu/classes/cs181ca/resources/debugging.pdf

Lab 3 Simulator Tuning and Debugging Lab

function that we're calling. What are in the contents of these variables? You can examine their
state by calling print <var name> or p <var name> for whichever variable you would like to
look at.

Do you see the bug?? Take a few minutes to try to inspect the relevant state to figure out
what went wrong... (scroll to the next page to find out what went wrong).

2 of CS181CA Fall 2025



Lab 3 Simulator Tuning and Debugging Lab

We didn’t pass the appropriate input to our buggy executable! As a result, our file never
opened and we could not parse the inputs to get the cycle time. Let’s go ahead and fix this by
running . /bin/buggy configs/configl test-progs/testl/testl. (Did it work??) Of course
it didn’t work... it isn’t called buggy . cc for nothing! What is the error that you see this time?

1.2 Stepping Through Programs

It seems that the error happens in a function that is called by our main function this time around.
This means that our debugger is jumping all over the place, which can be difficult to keep track
of! To make it easier to see, you may want to use a helper gdb tool called layout. If you run
layout split from inside the debugger, you will see that pane gets split. The top pane will
now show the code source and where the debugger is in its execution!

Rather than running from the beginning, let’s just start our program at the beginning. Launch
the debugger (gdb --args ./bin/buggy configs/configl test-progs/testl/testl). Rather
than saying run, we will instead use start. This sets a temporary breakpoint in the first line
of main, calls run, and stops at the temporary breakpoint. From here, let’s walk through the
execution. We can go to the next line of code by running next or n. If we want to step into a
function rather than step over it, we can call step or s.

When you get to the clockSpeed function, step into it. We can continue the execution from
here. You may find it helpful to continue printing out state as you step to see what else is going
on in the program. Eventually, we will get to the point where the error happens. Ugh... What
happened? Can you see what the error was at this point in the execution? (go to the next page
to see the error).

3 of CS181CA Fall 2025



Lab 3 Simulator Tuning and Debugging Lab

It looks like we were trying to parse the header line of the CSV file! We don’t really want
to change all possible input CSV files, so let’s fix our source to account for this format. Do you
have any ideas of what to do? Once you come up with a fix, recompile your code (make buggy)
and repeat this process until you are confident that you can produce the correct calculation of
the timing!

There’s more! Keep going on your own (this document will be updated when Prof. Thomas
gets time to finish it).

4 of CS181CA Fall 2025



	Computing Functional Simulator Scaling Overhead
	gdb Warm Up
	Stepping Through Programs


