
Lab 1 Setup and Source-to-Assembly

The goal of this lab is two-fold. 1© You should leave this section feeling comfortable that
you can build, run, and debug all of the tools that we will be using in this course. 2© You will
reinforce some of the abstract concepts that we described in class with respect to the design of
an assembly language.

1 Having a Stable Environment
In this course, there is no standardized IDE (e.g., VSCode, Eclipse, PyCharm, etc) in which
you will do your development. However, the software for this course does assume that you have
access to a Linux-based command line to build, run, and debug your environments. If you do
not have access to a personal device with this available, the machines in the Lab (Edmunds 105)
have all of the software available for you to use.

The projects that you will work from have various degrees of “finicky-ness” with respect to
the system software installed and used. To help alleviate some of these configuration headaches,
you are provided access to both a course VM and a course Docker container. Both environments
have the appropriate software installed, and both certainly have their strengths and weaknesses.

If you have a Linux-based device and would like to install packages natively and locally
outside of these environments, you can do so by installing the following (though this is not
required or necessarily recommended.)

1 [sudo] apt install build-essential \
2 # install dependencies for gem5
3 scons python3-dev git pre-commit zlib1g zlib1g-dev \
4 libprotobuf-dev protobuf-compiler libprotoc-dev libgoogle-perftools-dev \
5 libboost-all-dev libhdf5-serial-dev python3-pydot python3-venv python3-tk mypy \
6 m4 libcapstone-dev libpng-dev libelf-dev pkg-config wget cmake doxygen \
7 clang-format gdb lldb \
8 # install dependencies for riscv gnu toolchain
9 autoconf automake autotools-dev curl python3 python3-pip python3-tomli libmpc-dev \

10 libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool \
11 patchutils bc zlib1g-dev libexpat-dev ninja-build git cmake libglib2.0-dev libslirp

-dev
12

13 # download and install gem5
14 git clone https://github.com/gem5/gem5.git /path/to/gem5
15 cd /path/to/gem5 && scons build/RISCV/gem5.debug -j4
16 cd ~
17

18 # download and install riscv toolchain
19 git clone https://github.com/riscv/riscv-gnu-toolchain /path/to/riscv-gnu-toolchain
20 cd /path/to/riscv-gnu-toolchain && ./configure --prefix=/opt/riscv && make
21 cd ~

If you intend to use Docker, please see the Docker resource on the course page for setup and
usage. If you intend to use the Virtual Machine, please see the VM resource. Once you’ve gotten
through this step, congratulations ! You will use this environment for labs and assignments
throughout the rest of the term.

1 of 4 CS181CA Fall 2025

https://cs.pomona.edu/classes/cs181ca/resources/docker.pdf
https://cs.pomona.edu/classes/cs181ca/resources/vm.pdf


Lab 1 Setup and Source-to-Assembly

2 Exploring Instruction Set Implications
In this lab, you will be getting used to writing various C++ programs to explore the implications
of various instruction sets. In particular, you will dig into how each instruction set implements
common high level programming language constructs and syntaxes. In doing so, you will use
various tools to examine the implications of the binary states.

In this section, you may find it useful to use the Docker container. If you do not have space
on your device to run the container, consider using the lab machines or working with someone
who does.

Deliverable A goal of this lab is to get comfortable with C++ programming and assembly
languages. However, this lab does not require that you submit anything, so you may use any
tools (AI or otherwise) that you see fit to complete the tasks as long as it benefits your learning.
You will be asked to complete an ungraded short reflection at the end of the lab to help me refine
this exercise for future iterations – please describe your experiences there!

I would encourage you still follow the tasks and write your own code to build the mental-to-
physical circuitry models that will refine your intuition.

2.1 Exploring Looping
In this section, you are asked to first write a C++ program that uses loops. You are encouraged
to write and re-write the same program using various looping strategies to examine how your
compiler translates these different implementations into assembly. For each section, you may find
it useful to make note of how the compiler for the various ISAs interprets the various looping
strategies.

In this section, you will implement a program that aggregates the outro lyrics to Hey Jude
by the Beatles (see 3:09 to the end). In particular, the outro repeats the lyrics “Na-na-na-na-na-
na-naa Na-na-na-naa, hey, Jude” twenty-four times before the song ends.

In doing so, please implement three programs: jude-1.cc, jude-2.cc, and jude-3.cc that
use for-loops, while-loops, and do-while loops respectively. You may find the string library
particularly useful in this exercise.

Building an Initial Target After you’ve written jude-<n>.cc, compile it to each of the
target assemblies using the various compilers. The arm64 compiler is the native compiler, since
your container emulates an arm64 host. First, use the command g++ -S jude-<n>.cc -o jude-
<n>.arm64 and examine the output. Then, add the -g flag. What changes between these files?
What does -g do?

Comparing Outputs Given your previous answer, use the appropriate flags to build the
appropriate targets for the riscv64 and x86_64 assemblies. How would you know which compiler
to use? You may want to look at the output from ls /usr/bin/*g++*.

2.2 Conditionals
In the coda of Hey Jude, you may notice that Paul McCartney rhythmically adlibs all sorts of
variations of the main body lyrics to the background of the coda. To add this behavior to your
lyrical output, add an if-statement that, with some probability, adds a creative adlib to your
lyrical output . You may find the <random> library helpful!

2 of 4 CS181CA Fall 2025

https://www.youtube.com/watch?v=mQER0A0ej0M&list=PLfdMKJMGPPtyZaGJo5j4A8OTTMhR850T_&index=2
https://www.youtube.com/watch?v=mQER0A0ej0M&list=PLfdMKJMGPPtyZaGJo5j4A8OTTMhR850T_&index=2
https://en.cppreference.com/w/cpp/header/random.html


Lab 1 Setup and Source-to-Assembly

Binary Disassembly Unlike in the previous step, compile your source to the full executable
byte code. Test that your code works by running it! What error messages (if any) do you get
for the non-native (i.e., x86 and riscv) compilations? What might explain these error messages
(or lack thereof)?

After you have built your executables, you will examine the output by disassembling it. This
means transforming the binary format into readable assembly. To do so, you can use the objdump
Linux command line tool. If you want to read it in the command line, you can use the less
utility by running objdump -d <binary file> | less. If you want to open this up as a raw
file, you can print the output to a file by running objdump -d <binary file> > <output file
name>. This will allow you to open and search the file.

Comparing Outputs For simplicity, navigate to the header for the main function of your
disassembly (note, this is different than the “main start” libc function). You will see several
fields for each line here: the left-most column describes the program offset (i.e., what the program
counter will refer to when reading that instruction), the next column are the raw bytes that the
current instruction is represented as a hexadecimal number, after that is the actual instruction
and the inputs to that instruction (typically registers, addresses, immediates, etc).

Once again, use the disassembled outputs to find your conditional calls and compare the
instructions used to implement these high-level semantics in assembly across the languages.
What is similar? What is different? You may find it helpful to think about expressiveness,
variety of instructions used, instruction size (in terms of bytes), variation in instruction size, etc.

2.3 Vectors and Deques
As you will have noticed by this point, the string library in C++ makes managing strings much
easier than in C. C++ has other libraries that help make managing containers of dynamically
sized objects much easier. One of the most common is std::vector. A vector implements a
stack (i.e., last in, first out), and supports push_back and pop_back modifiers. There are two
main ways of iterating across a vector, iterating from 0 to v->size() and accessing elements
as v[i] or using an iterator.

Iterators are across C++ objects are typically accessed using calls to obj->begin(). They
tend to have very verbose syntax, so the standard convention to use iterators in a for-loop is as
follows:

1 std::vector<int> obj;
2

3 for (auto it = obj.begin(); it != obj.end(); it++) {
4 // execute code!
5 int val = (int) *it;
6 }

There are a few things to notice here: 1© when we declare the vector, we have to declare the
type of values that the vector will maintain. At present, this loop will never enter the loop body
because the vector is empty, so obj.begin() == obj.end(). 2© The loop uses auto to instanti-
ate the it variable which tells the compiler to infer the type of variable at compile time. This can
often lead to errors! You can always spell out the full type of std::iterator<std::vector> to
ensure the compiler catches any unintended declarations. 3© We can extract the value from an
iterator by dereferencing it. Iterators act as a wrapper for elements in a container where the star
(*) operator extracts the data. You’ll notice the ++ operator is similar to calling it = it->next
at the end of the loop.

Another helpful data structure in C++ is std::deque. A deque (or double ended queue) acts
very similar to a vector, but has push_back, push_front, pop_back, and pop_front interfaces.

3 of 4 CS181CA Fall 2025

https://en.cppreference.com/w/cpp/header/vector.html
https://en.cppreference.com/w/cpp/header/deque.html


Lab 1 Setup and Source-to-Assembly

Using C++ Data Structures Modify your jude-<n>.cc files with the Paul McCartney
adlibs so that, rather than merely appending to a string, first populates a vector or deque full
of “Na-na” strings. Then, iterate through the elements in the data structure using the indices
to randomly assign adlibs with random probability.

Afterwards, use an iterator-based loop back through the structure to extract elements and
print out the data from each element of the container.

Analyzing the Output Take a minute to examine the produced binary (either by compiling
with -S or using objdump) to understand how the data structure is being produced.

In addition, compare the resulting binary size once you’ve compiled your target for each of
the ISAs. You can do so using the du (disk utilization) command line utility. For example, you
may say du -sh jude-1.x86 to see how many bytes that binary uses. What do you notice about
the size of the outputs for the various instruction sets? What contributes to the binary size?

Notice, the vector and/or deque is created as a heap variable. How is this represented in the
assembly? If we were to create an array, how might this be represented in the binary? Remember,
the stack is maintained by the processor using the sp register, a special register referring to the
bottom of the stack.

3 Summary
In this lab, you setup your development environment and reinforced concepts about assembly
languages that we talked about in class. In addition, you got to practice developing toy programs
in C++ and used common C++ libraries (which make it much easier to use than C!) to simplify
the tasks. You were also exposed to several ways to compare program outputs across various
compilers and explore different strategies to compare the trade-offs between

Before you leave, please fill out the following survey to help me refine this lab for future
versions of this class. Thank you for your hard work!

https://forms.cloud.microsoft/r/rb74cSs3Ld

4 of 4 CS181CA Fall 2025

https://forms.cloud.microsoft/r/rb74cSs3Ld

	Having a Stable Environment
	Exploring Instruction Set Implications
	Exploring Looping
	Conditionals
	Vectors and Deques

	Summary

