CS261: A Second Course in Algorithms
Lecture #16: The Traveling Salesman Problem

*

Tim Roughgarden'
February 25, 2016

1 The Traveling Salesman Problem (TSP)

In this lecture we study a famous computational problem, the Traveling Salesman Problem
(TSP). For roughly 70 years, the TSP has served as the best kind of challenge problem, mo-
tivating many different general approaches to coping with N P-hard optimization problems.
For example, George Dantzig (who you'll recall from Lecture #10) spent a fair bit of his time
in the 1950s figuring out how to use linear programming as a subroutine to solve ever-bigger
instances of TSP. Well before the development of N P-completeness in 1971, experts were
well aware that the TSP is a “hard” problem in some sense of the word.

So what’s the problem? The input is a complete undirected graph G = (V, E), with a
nonnegative cost ¢, > 0 for each edge e € E. By a TSP tour, we mean a simple cycle that
visits each vertex exactly once. (Not to be confused with an Euler tour, which uses each
edge exactly once.) The goal is to compute the TSP tour with the minimum total cost. For
example, in Figure 1, the optimal objective function value is 13.

The TSP gets its name from a silly story about a salesperson who has to make a number
of stops, and wants to visit them all in an optimal order. But the TSP definitely comes up in
real-world scenarios. For example, suppose a number of tasks need to get done, and between
two tasks there is a setup cost (from, say, setting up different equipment or locating different
workers). Choosing the order of operations so that the tasks get done as soon as possible is
exactly the TSP. Or think about a scenario where a disk has a number of outstanding read
requests; figuring out the optimal order in which to serve them again corresponds to TSP.

*(©2016, Tim Roughgarden.
"Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,
CA 94305. Email: tim@cs.stanford.edu.

Figure 1: Example TSP graph. Best TSP tour is a-c-b-d-a with cost 13.

The TSP is hard, even to approximate.

Theorem 1.1 If P # NP, then there is no a-approzimation algorithm for the TSP (for
any).

Recall that an a-approximation algorithm for a minimization problem runs in polynomial
time and always returns a feasible solution with cost at most o times the minimum possible.

Proof of Theorem 1.1: We prove the theorem using a reduction from the Hamiltonian cycle
problem. The Hamiltonian cycle problem is: given an undirected graph, does it contain a
simple cycle that visits every vertex exactly once? For example, the graph in Figure 2 does
not have a Hamiltonian cycle.! This problem is N P-complete, and usually one proves it in
a course like CS154 (e.g., via a reduction from 3SAT).

o
&
@

Figure 2: Example graph without Hamiltonian cycle.

02020
OO0

"While it’s generally difficult to convince someone that a graph has no Hamiltonian cycle, in this case
there is a slick argument: color the four corners and the center vertex green, and the other four vertices
red. Then every closed walk alternates green and red vertices, so a Hamiltonian cycle would have the same
number of green and red vertices (impossible, since there are 9 vertices).

For the reduction, we need to show how to use a good TSP approximation algorithm to
solve the Hamiltonian cycle problem. Given an instance G = (V, E) of the latter problem,
we transform it into an instance G' = (V', E', ¢) of TSP, where:

o V' =V,
e F'is all edges (so (V', E') is the complete graph);

e for each e € I, set
- 1 ifee £
““ 1\ >an ife¢ E,

where n is the number of vertices and « is the approximation factor that we want to
rule out.

For example, in Figure 2, all the edges of the grid get a cost of 1, and all the missing edges
get a cost greater than an.

The key point is that there is a one-to-one correspondence between the Hamiltonian
cycles of G and the TSP tours of G’ that use only unit-cost edges. Thus:

(i) If G has a Hamiltonian cycle, then there is a TSP tour with total cost n.
(ii) If G has no Hamiltonian cycle, then every TSP tour has cost larger than an.

Now suppose there were an a-approximation algorithm A for the TSP. We could use A to
solve the Hamiltonian cycle problem: given an instance G of the problem, run the reduction
above and then invoke A on the produced TSP instance. Since there is more than an «
factor gap between cases (i) and (ii) and A is an a-approximation algorithm, the output of
A indicates whether or not G is Hamiltonian. (If yes, then it must return a TSP tour with
cost at most an; if no, then it can only return a TSP tour with cost bigger than an.) B

2 Metric TSP

2.1 Toward a Tractable Special Case

Theorem 1.1 indicates that, to prove anything interesting about approximation algorithms for
the TSP, we need to restrict to a special case of the problem. In the metric TSP, we assume
that the edge costs satisfy the triangle inequality (with ¢y, < cyp + Cyyp for all u,v,w € V).
We previously saw the triangle inequality when studying the Steiner tree problem (Lectures
#13 and #15). The big difference is that in the Steiner tree problem the metric assumption
is without loss of generality (see Exercise Set #7) while in the TSP it makes the problem
significantly easier.?

The metric TSP problem is still N P-hard, as shown by a variant of the proof of Theo-
rem 1.1. We can’t use the big edge costs an because this would violate the triangle inequality.

2This is of course what we’re hoping for, because the general case is impossible to approximate.

But if we use edge costs of 2 for edges not in the given Hamiltonian cycle instance G, then
the triangle inequality holds trivially (why?). The optimal TSP tour still has value at most
n when G has a Hamiltonian cycle, and value at least n + 1 when it does not. This shows
that there is no exact polynomial-time algorithm for metric TSP (assuming P # NP). It
does not rule out good approximation algorithms, however. And we’ll see next that there
are pretty good approximation algorithms for metric TSP.

2.2 The MST Heuristic

Recall that in approximation algorithm design and analysis, the challenge is to relate the
solution output by an algorithm to the optimal solution. The optimal solution itself is often
hard to get a handle on (its N P-hard to compute, after all), so one usually resorts to bounds
on the optimal objective function value — quantities that are “only better than optimal.”
Here’s a simple lower bound for the TSP, with or without the triangle inequality.

Lemma 2.1 For every instance G = (V, E, ¢), the minimum-possible cost of a TSP tour is
at least the cost of a minimum spanning tree (MST).

Proof: Removing an edge from the minimum-cost TSP tour yields a spanning tree with only
less cost. The minimum spanning tree can only have smaller cost. H

Lemma 2.1 motivates using the MST as a starting point for building a TSP tour — if
we can turn the MST into a tour without suffering too much extra cost, then the tour will
be near-optimal. The idea of transforming a tree into a tour should ring some bells — recall
our online (Lecture #13) and offline (Lecture #15) algorithms for the Steiner tree problem.
We’ll reuse the ideas developed for Steiner tree, like doubling and shortcutting, here for the
TSP. The main difference is that while these ideas were used only in the analysis of our
Steiner tree algorithms, to relate the cost of our algorithm’s tree to the minimum-possible
cost, here we’ll use these ideas in the algorithm itself. This is because, in TSP, we have to
output a tour rather than a tree.

MST Heuristic for Metric TSP

compute the MST T of the input G

construct the graph H by doubling every edge of T

compute an Euler tour C' of H

// every v €V is visited at least once in C

shortcut repeated occurrences of vertices in C' to obtain a TSP tour

When we studied the Steiner tree problem, steps 2—4 were used only in the analysis. But
all of these steps, and hence the entire algorithm, are easy to implement in polynomial (even
near-linear) time.?

3Recall from CS161 that there are many fast algorithms for computing a MST, including Kruskal’s and
Prim’s algorithms.

Theorem 2.2 The MST heuristic is a 2-approximation algorithm for the metric TSP.
Proof: We have

cost of our TSP tour < cost of C

< 2 - cost of optimal TSP tour,

where the first inequality holds because the edge costs obey the triangle inequality, the
second equation holds because the Euler tour C' uses every edge of H exactly once, the third

equation follows from the definition of H, and the final inequality follows from Lemma 2.1.
|

The analysis of the MST heuristic in Theorem 2.2 is tight — for every constant ¢ < 2,
there is a metric TSP instance such that the MST heuristic outputs a tour with cost more
than ¢ times that of an optimal tour (Exercise Set #8).

Can we do better with a different algorithm? This is the subject of the next section.

2.3 Christofides’s Algorithm

Why were we off by a factor of 2 in the MST heuristic? Because we doubled every edge of
the MST T. Why did we double every edge? Because we need an Eulerian graph, to get
an Euler tour that we can shortcut down to a TSP tour. But perhaps it’s overkill to double
every edge of the MST. Can we augment the MST T to get an Eulerian graph without paying
the full cost of an optimal solution?

The answer is yes, and the key is the following slick lemma. It gives a second lower bound
on the cost of an optimal TSP tour, complementing Lemma 2.1.

Lemma 2.3 Let G = (V, E) be a metric TSP instance. Let S C V' be an even subset of
vertices and M a minimum-cost perfect matching of the (complete) graph induced by S. Then

ZceS%-OPT,

where OPT denotes the cost of an optimal TSP tour.

Proof: Fix S. Let C* denote an optimal TSP tour. Since the edges obey the triangle
inequality, we can shortcut C* to get a tour Cs of S that has cost at most OPT'. Since |S| is
even, Cg is a (simple) cycle of even length (Figure 3). Cys is the union of two disjoint perfect
matchings (alternate coloring the edges of C's red and green). Since the sum of the costs of
these matchings is that of C's (which is at most OPT'), the cheaper of these two matchings
has cost at most OPT'/2. The minimum-cost perfect matching of S can only be cheaper. B

5

@@@@
[O20

Figure 3: (s is a simple cycle of even length representing union of two disjoint perfect
matchings (red and green).

Lemma 2.3 brings us to Christofides’s algorithm, which differs from the MST heuristic
only in substituting a perfect matching computation in place of the doubling step.

Christofides’s Algorithm

compute the MST T of the input G

compute the set W of vertices with odd degree in T

compute a minimum-cost perfect matching M of W

construct the graph H by adding M to T

compute an Euler tour C' of H

// every v €V is visited at least once in C

shortcut repeated occurrences of vertices in C' to obtain a TSP tour

In the second step, the set W always has even size. (The sum of the vertex degrees of a graph
is double the number of edges, so there cannot be an odd number of odd-degree vertices.) In
the third step, note that the relevant matching instance is the graph induced by W, which
is the complete graph on W. Since this is not a bipartite graph (at least if |[W| > 4), this is
an instance of nonbipartite matching. We haven’t covered any algorithms for this problem,
but we mentioned in Lecture #6 that the ideas behind the Hungarian algorithm (Lecture
#5) can, with additional ideas, be extended to also solve the nonbipartite case in polynomial
time. In the fourth step, there may be edges that appear in both T" and M. The graph H
contains two copies of such edges, which is not a problem for us. The last two steps are
the same as in the MST heuristic. Note that the graph H is indeed Eulerian — adding the
matching M to T increases the degree of each vertex v € W by exactly one (and leaves other
degrees unaffected), so 7'+ M has all even degrees.? This algorithm can be implemented in
polynomial time — the overall running time is dominated by the matching computation in
the third step.

Theorem 2.4 Christofides’s algorithm is a %—approximation algorithm for the metric TSP.

4And as usual, H is connected because T is connected.

Proof: We have

cost of our TSP tour < cost of C

- Yo

ecH

= Zce + Z Ce

ecT ee M

S~ ~——
<OPT (Lem 2.1) <OPT/2 (Lem 2.3)

3
< 3 cost of optimal TSP tour,
where the first inequality holds because the edge costs obey the triangle inequality, the
second equation holds because the Euler tour C' uses every edge of H exactly once, the third

equation follows from the definition of H, and the final inequality follows from Lemmas 2.1
and 2.3. B

The analysis of Christofides’s algorithm in Theorem 2.4 is tight — for every constant
c < %, there is a metric TSP instance such that the algorithm outputs a tour with cost more
than ¢ times that of an optimal tour (Exercise Set #8).

Christofides’s algorithm is from 1976. Amazingly, to this day we still don’t know whether
or not there is an approximation algorithm for metric TSP better than Christofides’s algo-
rithm. It’s possible that no such algorithm exists (assuming P # NP, since if P = NP the
problem can be solved optimally in polynomial time), but it is widely conjecture that % (if
not better) is possible. This is one of the biggest open questions in the field of approximation
algorithms.

3 Asymmetric TSP

Figure 4: Example ATSP graph. Note that edges going in opposite directions need not have
the same cost.

We conclude with an approximation algorithm for the asymmetric TSP (ATSP) problem,
the directed version of TSP. That is, the input is a complete directed graph, with an edge

7

