CS 181 - Advanced Algorithms

YO DAWG | HEARD YOU LIKE ALGORITHMS
Welcome back to campus
and to this class!

BOTTOM TEXT



Who am |

Prof. Michael Zlatin. | often go
by Mik.

Ph.D. from Carnegie Mellon in
Pittsburgh, Pennsylvania. Still

getting used to this coast.

| like all sports, currently
volleyball and rock climbing.

Etc. etc.

Hiking in Switzerland. Me (left), cow (right).



Algorithms. ..

Problems:

- Sorting a list of numbers

- Graph traversal

- Shortest way to get from node a to
node b in a graph

- Minimum spanning trees

- Flows?

T\ ' THAT'S ODBLY SPECIFIC.

Solutions:
- Bubble sort, merge sort

- Breadth First Search, Depth First Search éag@ 55%% ﬁ EQ

- Dijkstra’s algorithm, Bellman-Ford, FW . ..
- Prim’s, Kruskal’s

(=)
- Ford-Fulkerson, Edmonds-Karp ?% ?% é Egm g



An algorithm is an answer to a class of
problems

What is the length of the shortest path from A to F in this graph?



How do we compare algorithms?

* Feasibility: always outputs a valid path from s to tin the
graph

* Optimality: The path is always a eI

Computer Science > Data Structures and Algorithms

[Submitted on 23 Apr 2025 (v1), last revised 30 Jul 2025 (this version, v2)]

Breaking the Sorting Barrier for Directed Single-Source Shortest Paths

o Running time: On a graph With n r Ran Duan, Jiayi Mao, Xiao Mao, Xinkai Shu, Longhui Yin

We give a deterministic O(mlong3 n)-time algorithm for single-source shortest paths (SSSP) on directed graphs with real non-negative edge
0 1 t M weights in the comparison-addition model. This is the first result to break the O(m + nlog n) time bound of Dijkstra's algorithm on sparse graphs,
m n O g n I I I l e ° showing that Dijkstra's algorithm is not optimal for SSSP.

Comments: 17 pages

Subjects: Data Structures and Algorithms (cs.DS)
ACMclasses: F.2.2

Cite as: arXiv:2504.17033 [cs.DS]

T h i S ye a r: “ i m p rove m e nt » 0 n (or arXiv:2504.17033v2 [cs.DS] for this version)

https://doi.org/10.48550/arXiv.2504.17033 0

Dij kStra,S: O(m . 10g2/3 n ). Submission history

From: Ran Duan [view email]
[v1] Wed, 23 Apr 2025 18:26:39 UTC (35 KB)

Best Paper Award at STOC 2025 [v2] Wed, 30 Jul 2025 11:02:48 UTC (49 KB)




Can we do it faster?

This is a good question
Faster algorithms for fundamental problems:

For example, MST:
- Naive brute force: 2™
- Kruskal [1956]: O(m - logm )

- Chazzele [2000]: O(m - a(m)), where « is the
inverse Ackerman function.

a (222216) ~ 4




Time complexity and input size

* Depends on how you store the
graph. o e o

* Graph on n nodes with m edges:
* Adjacency matrix: 0(n?)

* Adjacencylist: O(n + m) e °

* We will always just assume it is
given as an adjacency list.



Q: Which problems will we be able to solve in practice?

—— -
- 3 g ol o ‘
- 5 i g% \, !
! :
von Neumann Nash Godel Cobham Rabin

(1953) {1955) (1956) (1964)

A working definition: Those with poly-time algorithms

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale well on larger inputs



Q: Which problems admit polynomial time algorithms?

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring

linear programming integer linear programming



Can we do It faster?

“It’s all or nothing baby”

Karp: Either all of these are in P,
or none are:

 SAT

e 3-SAT
* Clique
* Independent Set Richard Karp
* Vertex Cover

* Hamiltonian Cycle

* Subset Sum NP-hard: If there is a polynomial time algorithm
. 3D-.match|ng for an NP-hard problem, then there is a poly time
* Steiner Tree algorithm for all problems in NP.




Course Goals

* Goal #1: What are the outer reaches of problemsin P

- Flows, cuts, matchings, linear programming. More paradigms.
- Utilize this toolbox effectively and communicate solutions well

* Goal #2: How do we handle problems for which we
believe an efficient algorithm does not exist?

- Fast algorithms for NP-hard problems: approximation and
parameterization

- Problems where the input is not fully known: online and streaming



	CS 181 – Advanced Algorithms
	Who am I
	Algorithms . . .
	An algorithm is an answer to a class of problems
	How do we compare algorithms?
	Can we do it faster?
	Time complexity and input size
	Slide Number 9
	Slide Number 10
	Can we do it faster?
	Course Goals

