
CS 181 – Advanced Algorithms

Welcome back to campus
and to this class!

Who am I

- Prof. Michael Zlatin. I often go
by Mik.

- Ph.D. from Carnegie Mellon in
Pittsburgh, Pennsylvania. Still
getting used to this coast.

- I like all sports, currently
volleyball and rock climbing.

- Etc. etc.
Hiking in Switzerland. Me (left), cow (right).

Algorithms . . .
Problems:
- Sorting a list of numbers
- Graph traversal
- Shortest way to get from node a to

node b in a graph
- Minimum spanning trees
- Flows?

Solutions:
- Bubble sort, merge sort
- Breadth First Search, Depth First Search
- Dijkstra’s algorithm, Bellman-Ford, FW . . .
- Prim’s, Kruskal’s
- Ford-Fulkerson, Edmonds-Karp

An algorithm is an answer to a class of
problems

What is the length of the shortest path from A to F in this graph?

How do we compare algorithms?

• Feasibility: always outputs a valid path from s to t in the
graph

• Optimality: The path is always a shortest path

• Running time: on a graph with n nodes, and m edges, takes
𝑂𝑂(𝑚𝑚 + 𝑛𝑛 log𝑛𝑛) time.

This year: “improvement” on
Dijkstra’s: 𝑂𝑂(𝑚𝑚 ⋅ log2/3 𝑛𝑛).
Best Paper Award at STOC 2025

Can we do it faster?
This is a good question

Faster algorithms for fundamental problems:

For example, MST:
- Naïve brute force: 2𝑚𝑚

- Kruskal [1956]: 𝑂𝑂(𝑚𝑚 ⋅ log𝑚𝑚)
- Chazzele [2000]: 𝑂𝑂(𝑚𝑚 ⋅ 𝛼𝛼(𝑚𝑚)), where 𝛼𝛼 is the
inverse Ackerman function.

𝛼𝛼 222
216

≈ 4

8

3

8
7

2

2

4

3
1

Time complexity and input size
• Depends on how you store the

graph.

• Graph on n nodes with m edges:
• Adjacency matrix: 𝑂𝑂(𝑛𝑛2)
• Adjacency list: 𝑂𝑂(𝑛𝑛 + 𝑚𝑚)

• We will always just assume it is
given as an adjacency list.

P

Q: Which problems will we be able to solve in practice?

A working definition: Those with poly-time algorithms

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale well on larger inputs

P

Q: Which problems admit polynomial time algorithms?

Can we do it faster?

Karp: Either all of these are in P,
or none are:

• SAT
• 3-SAT
• Clique
• Independent Set
• Vertex Cover
• Hamiltonian Cycle
• Subset Sum
• 3D-matching
• Steiner Tree

“It’s all or nothing baby”

Richard Karp

NP-hard: If there is a polynomial time algorithm
for an NP-hard problem, then there is a poly time
algorithm for all problems in NP.

Course Goals
• Goal #1: What are the outer reaches of problems in P

- Flows, cuts, matchings, linear programming. More paradigms.
- Utilize this toolbox effectively and communicate solutions well

• Goal #2: How do we handle problems for which we
believe an efficient algorithm does not exist?

- Fast algorithms for NP-hard problems: approximation and
parameterization

- Problems where the input is not fully known: online and streaming

	CS 181 – Advanced Algorithms
	Who am I
	Algorithms . . .
	An algorithm is an answer to a class of problems
	How do we compare algorithms?
	Can we do it faster?
	Time complexity and input size
	Slide Number 9
	Slide Number 10
	Can we do it faster?
	Course Goals

