
CS 181 – Advanced Algorithms

Welcome back to campus 
and to this class!



Who am I

- Prof. Michael Zlatin. I often go 
by Mik.

- Ph.D. from Carnegie Mellon in 
Pittsburgh, Pennsylvania. Still 
getting used to this coast.

- I like all sports, currently 
volleyball and rock climbing.

- Etc. etc.
Hiking in Switzerland. Me (left), cow (right).



Algorithms . . .
Problems:
- Sorting a list of numbers
- Graph traversal
- Shortest way to get from node a to 

node b in a graph
- Minimum spanning trees
- Flows?

Solutions:
- Bubble sort, merge sort
- Breadth First Search, Depth First Search
- Dijkstra’s algorithm, Bellman-Ford, FW . . .
- Prim’s, Kruskal’s
- Ford-Fulkerson, Edmonds-Karp



An algorithm is an answer to a class of 
problems

What is the length of the shortest path from A to F in this graph?



How do we compare algorithms?

• Feasibility: always outputs a valid path from s to t in the 
graph

• Optimality: The path is always a shortest path

• Running time: on a graph with n nodes, and m edges, takes 
𝑂𝑂(𝑚𝑚 +  𝑛𝑛 log𝑛𝑛) time.

This year: “improvement” on 
Dijkstra’s: 𝑂𝑂(𝑚𝑚 ⋅ log2/3 𝑛𝑛 ).
Best Paper Award at STOC 2025



Can we do it faster?
This is a good question

Faster algorithms for fundamental problems:

For example, MST:
- Naïve brute force: 2𝑚𝑚

- Kruskal [1956]: 𝑂𝑂(𝑚𝑚 ⋅ log𝑚𝑚 )
- Chazzele  [2000]:   𝑂𝑂(𝑚𝑚 ⋅ 𝛼𝛼(𝑚𝑚)), where 𝛼𝛼 is the 
inverse Ackerman function.
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Time complexity and input size
• Depends on how you store the 

graph.

• Graph on n nodes with m edges:
• Adjacency matrix: 𝑂𝑂(𝑛𝑛2)
• Adjacency list: 𝑂𝑂(𝑛𝑛 +  𝑚𝑚)

• We will always just assume it is 
given as an adjacency list.



P

Q: Which problems will we be able to solve in practice?

A working definition: Those with poly-time algorithms

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale well on larger inputs



P

Q: Which problems admit polynomial time algorithms?



Can we do it faster?

Karp: Either all of these are in P, 
or none are:

• SAT
• 3-SAT
• Clique
• Independent Set
• Vertex Cover
• Hamiltonian Cycle
• Subset Sum
• 3D-matching
• Steiner Tree

“It’s all or nothing baby”

Richard Karp

NP-hard: If there is a polynomial time algorithm 
for an NP-hard problem, then there is a poly time 
algorithm for all problems in NP.



Course Goals
• Goal #1: What are the outer reaches of problems in P

- Flows, cuts, matchings, linear programming. More paradigms.
- Utilize this toolbox effectively and communicate solutions well

• Goal #2: How do we handle problems for which we 
believe an efficient algorithm does not exist?

- Fast algorithms for NP-hard problems: approximation and 
parameterization

- Problems where the input is not fully known: online and streaming
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