Advanced Algorithms

Logistics

- Welcome back
- Reminder: assignment due next Tuesday, late days available
- Office hours today after class
- Course feedback:
 - Exercise sets
 - Length of assignment
 - Assign groups
 - Slides / notes
- You can always submit more feedback, see course webpage

Hot Tub LP Revisited

- You are running a Hot Tub production company.
- You can produce two types of hot tubs: Aqua-Spas and Hydro-Luxes.
- They require resources (pumps, labor, and tubing), and yield a certain profit

	Aqua-Spa	Hydro-Lux
Pumps	1	1
Labor	9 hours	6 hours
Tubing	12 feet	16 feet
Price	\$350	\$300

- You have 200 pumps, 1566 hours of labor, and 2880 feet of tubing.
- How many of each hot tub to produce if we want to maximize sales?

Linear Programming relaxation:

```
x_A = number of Aqua-Spas to produce
```

 x_H = number of Hydro-Luxes to produce

Maximize: $350x_A + 300x_H$

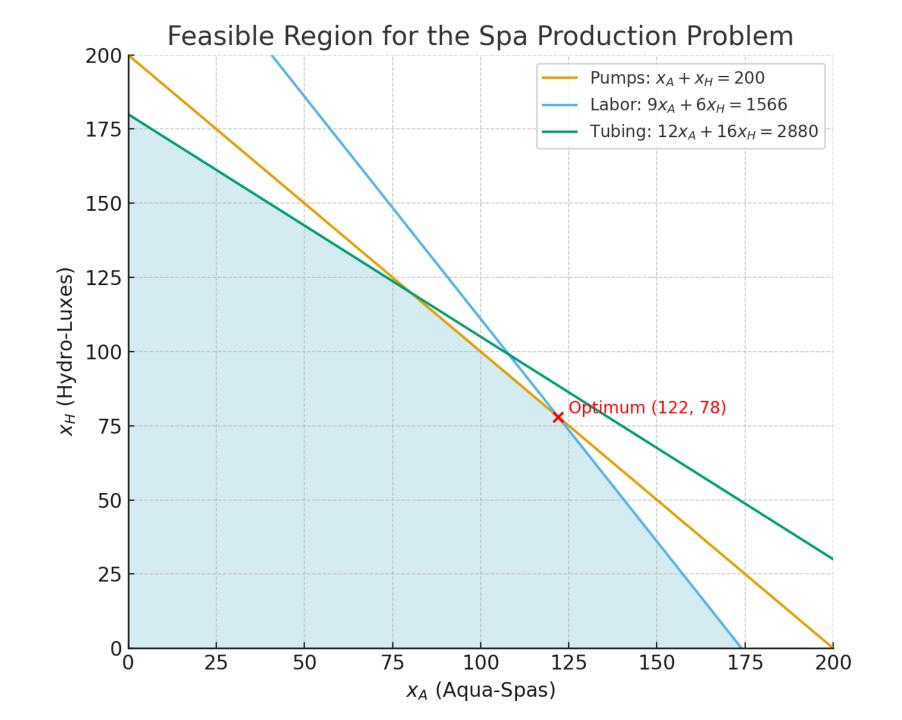
Subject to:

$$x_A + x_H \le 200$$

 $9x_A + 6x_H \le 1566$
 $12x_A + 16x_H \le 2880$
 $x_A, x_H \ge 0$

(pumps)
(labor)
(tubing)
(non-negativity)

Optimal value: \$66,100



Goal: upper bound the profit

Maximize: $350x_A + 300x_H$

Subject to:

```
x_A + x_H \le 200 (pumps)

9x_A + 6x_H \le 1566 (labor)

12x_A + 16x_H \le 2880 (tubing)

x_A, x_H \ge 0 (non-negativity)
```

Upper Bounds

- Let's call the optimal value z^*
- Start with the pumps constraint:
 - $x_A + x_H \le 200$
- Multiply both sides by 350:
 - $350x_A + 350x_H \le 70,000$
- Observe upper bound:
 - $z^* \le 70,000$
- Note: we relied on the non-negativity constraints for this conclusion

Upper Bounds

- Try another constraint now
- Start with the labor constraint:
 - $9x_A + 6x_H \le 1566$
- Multiply both sides by 50:
 - $450x_A + 300x_H \le 78,300$
- Observe upper bound:
 - $z^* \le 78,300$
- Note: we relied on the non-negativity constraints for this conclusion

Combining constraints

- Start with the pumps and labor constraints:
 - $x_A + x_H \le 200$
 - $9x_A + 6x_H \le 1566$
- Multiply pumps constraint by 300, labor constraint by 6:
 - $300x_A + 300x_H \le 60,000$
 - $54x_A + 36x_H \le 9{,}396$
- Add together
 - $354x_A + 336x_H \le 69,396$
- Observe upper bound:
 - $z^* \le 69,396$

General Strategy

- Start with the constraints:
 - $x_A + x_H \leq 200$
 - $9x_A + 6x_H \le 1566$
 - $12x_A + 16x_H \le 2880$
- Choose any three non-negative values y_1, y_2, y_3 and multiply:
 - $y_1(x_A + x_H) \le y_1(200)$
 - $y_2(9x_A + 6x_H) \le y_2(1566)$
 - $y_3(12x_A + 16x_H) \le y_3(2880)$
- Check that the objective is "beaten"
 - $y_1 + 9y_2 + 12y_3 \ge 350$
 - $y_1 + 6y_2 + 16y_3 \ge 300$
- Observe upper bound:
 - $z^* \le 200y_1 + 1566y_2 + 2880y_3$

General Strategy

- What's the best (lowest) upper bound we can get using this strategy?
- BIG idea: use a Linear Program.
- Decisions: y_1, y_2, y_3
- Objective: $\min 200y_1 + 1566y_2 + 2880y_3$
- Constraints:
 - $y_1 + 9y_2 + 12y_3 \ge 350$
 - $y_1 + 6y_2 + 16y_3 \ge 300$
 - $y_1, y_2, y_3 \ge 0$

This LP is the dual of the original LP

Duality

Primal:

s.t.

max $350x_A + 300x_H$

 $x_A + x_H \le 200$

 $9x_A + 6x_H \le 1566$

 $12x_A + 16x_H \le 2880$

 $x_A, x_H \ge 0$

Dual:

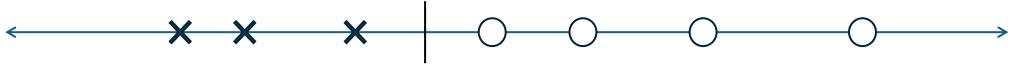
min $200y_1 + 1566y_2 + 2880y_3$

s.t. $y_1 + 9y_2 + 12y_3 \ge 350$

 $y_1 + 6y_2 + 16y_3 \ge 300$

 $y_1, y_2, y_3 \ge 0$

By construction, every feasible solution to the dual yields an upper bound on the value of the primal



primal solutions

dual solutions

Duality

All Linear Programs come in dual pairs. One maximizes one minimizes.

Weak Duality: given a primal LP and its dual LP:

objective value of any objective value of any feasible solution to the maximization problem objective value of any feasible solution to the minimization problem

Strong Duality: if primal has an optimal solution, then so does its dual, and their optimal values are equal.

OPT(primal) = OPT(dual)

X X X >

Your turn:

Consider the following LP:

$$\max 2x_1 + 7x_2 + 4x_3$$

$$x_1 + 2x_2 + x_3 \le 10$$

$$3x_1 + 3x_2 + 2x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

Show that the optimal value cannot exceed 25

Duality in Algorithm Design

