
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Network Flows II

The Ford-Fulkerson algorithm discussed in the last class takes time O (m F ), where F is the
value of the maximum flow, when all capacities are integral. This is fine if all edge capacities are
small, but if they are large numbers then this could even be exponentially large in the descrip-
tion size of the problem. In this lecture we examine some improvements to the Ford-Fulkerson
algorithm that produce much better (polynomial) running times regardless of the value of the
max flow or capacities.

We will then consider a generalization of max flow called minimum-cost flows, where edges
have costs as well as capacities, and the goal is to find flows with low cost. This problem has a
lot of nice properties, and is also highly practical since it generalizes the max flow problem.

Objectives of this lecture

In this lecture, we will:

- See an algorithm for max flow with polynomial running time (Edmonds-Karp)

- Define and motivate the minimum-cost flow problem

- Derive and analyze some algorithms for minimum-cost flows

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 26, Maximum Flow

- DPV, Algorithms, Chapter 7.2, Flows in Networks

- Erikson, Algorithms, Chapter 10, Maximum Flows & Minimum Cuts

1 Network flow recap
Recall that in the maximum flow proble, we are given a directed graph G , a source s , and a
sink t . Each edge (u , v ) has some capacity c (u , v ), and our goal is to find the maximum flow
possible from s to t . Last time we looked at the Ford-Fulkerson algorithm, which we used
to prove the min-cut max-flow theorem, as well as the integrality theorem for flows. The Ford-
Fulkerson algorithm is a greedy algorithm: we find a path from s to t of positive capacity and we
push as much flow as we can on it (saturating at least one edge on the path). We then describe
the capacities left over in a “residual graph”, which accounts for remaining capacity as well as
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the ability to redirect existing flow (and hence “undo” bad previous decisions) and repeat the
process, continuing until there are no more paths of positive residual capacity left between s
and t . We then proved that this in fact finds the maximum flow.

Assuming capacities are integers, the basic Ford-Fulkerson algorithm could make up to F iter-
ations, where F is the value of the maximum flow. Each iteration takes O (m ) time to find a path
using DFS or BFS and to compute the residual graph. (We assume that every vertex in the graph
is reachable from s , so m ≥ n −1.) So, the overall total time is O (m F ). This is fine if F is small,
like in the case of bipartite matching (where F ≤ n). However, it’s not good if capacities are
large and F could be very large. Here’s an example that could make the algorithm take a very
long time. If the algorithm selects the augmenting paths s → A→ B → t , then s → B → A→ t ,
repeating..., then each iteration only adds one unit of flow, but the max flow is 2101, so the algo-
rithm will take 2101 iterations. If the algorithm selected the augmenting paths s → A→ t then
s → B → t , it would be complete in just two iterations! So the question on our minds today is
can we find an algorithm that provably requires only polynomially many iterations?
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2 Shortest Augmenting Paths Algorithm (Edmonds-Karp)
There are several strategies for selecting better augmenting paths than arbitrary ones. Here’s
one that is quite simple and has a provable polynomial runtime. Its called the Shortest Aug-
menting Paths algorithm, or the Edmonds-Karp algorithm. The name of the algorithm might
give away a slight hint of what it does.

Algorithm: Shortest Augmenting Paths (Edmonds-Karp)

Edmonds-Karp implements Ford-Fulkerson by selecting the shortest augmenting path
each iteration.

Unsurprisingly, the Shortest Augmenting Paths (Edmonds-Karp) algorithm works by always
picking the shortest path in the residual graph (the one with the fewest number of edges). By
example, we can see that this would in fact find the max flow in the graph above in just two
iterations, but what can we say in general? In fact, the claim is that by picking the shortest
paths, the algorithm makes at most mn iterations. So, the running time is O (nm 2) since we
can use BFS in each iteration. The proof is pretty neat too.

Theorem: Runtime of Edmonds-Karp

The Shortest Augmenting Paths algorithm (Edmonds-Karp) makes at most mn itera-
tions.
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Proof. Let d be the distance from s to t in the current residual graph. We’ll prove the result by
showing:

Claim (a): d never decreases Consider one iteration of the algorithm. Before adding flow to
the augmenting path, every vertex v in G has some distance dv from the source vertex s in the
residual graph. Suppose the augmenting path consists of the vertices v1, v2, . . . vk . What can
we say about the distances of the vertices? Since the path is by definition a shortest path, it
must be true that dvi

= dvi−1
+ 1, that is, every vertex is one further from s . Now perform the

augmentation and consider what changes in the residual graph. Some of the edges (at least
one) become saturated, which means that the flow on the edge reaches its capacity. When this
happens, that edge will be removed from the residual graph. But another edge might appear
in the residual graph! Specifically, when e = (u , v ) goes from zero to nonzero flow, e ′ = (v, u )
may appear in the residual graph as a back edge (if it doesn’t exist already). Can this lower the
distance of any vertex? No, dv = du+1, so adding an edge from v to u can’t make a shorter path
from s to t .

Therefore, since the distance to any vertex can not decrease, d can not decrease.

Claim (b): every m iterations, d has to increase by at least 1 Each iteration saturates (fills
to capacity) at least one edge. Once an edge is saturated it can not be used because it will not
appear in the residual graph. For the edge to become usable again, it must be the case that its
back edge in the residual graph is used, which means that the back edge needs to appear on the
shortest path. However, if dv = du + 1, then it is not possible for the back edge (v, u ) to be on
a shortest path, so this can only occur if d increases. Since there are m edges, d must increase
by at least one every m iterations.

Since the distance between s and t can increase at most n times, in total we have at most nm
iterations.

This shows that the running time of this algorithm is O (nm 2). Note that this is true for any
capacities, including large ones and non-integer ones. So we really have a polynomial-time
algorithm for maximum flow!

3 Minimum-Cost Flows
We talked about the problem of assigning groups to time-slots where each group had a list
of acceptable versus unacceptable slots. This was the bipartite matching problem. A natural
generalization is to ask: what about preferences? E.g, maybe group A prefers slot 1 so it costs
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